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section One
INTRODUCTION

This dissertation comprises a number of distinct essays linked by
a common theme. The common theme is that all the sections of the dis-
sertation deal with one aspect or another of the theory of individual
choice behavior. 3ection Two focuses on cholces involving time; Sec-
tion Three focuses on how information affects ~hoices invelving uncer-
tainty. The final section, section Four, reports on some empirical
studies relating to the theoreti-al developments of the preceding two
sections. While there is a common theme to the dissertation the in-
dividual sections reflect a considerable diversity. This is due in
l~rze part to the inherent diversity of the subject matter. Disci-
plines ranging as broadly as statistics, psychology, philosophy, and
economics are concerned in one way or another with aspects of the
theory of individual choice behavior. The studies reported hcie re-
flect the diversity of these disciplinary viewpoints; neverth-less,
there is some emphasis on relating the problems considered to economic
situations.

I would like to begin these introductory comments by providing a
classification of alternative ways of looking at {nd{vidual choice
behavior. Many such classifications are possible; iuce and Suppes [6],
for example, dicotumize thecries of individual choice behavior in three
separate wayvs. The first way i{s whether or not the theory uses alge-
braic or probabilistic tools. The second wav is whether or .act the

decisions the {ndividuals are faced with {nvolve uncertainty or not,
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and the third way is whether or not the theories provide a complete
ranking of all the alternatives available to the individual or merely
specify which alternative he will select (or the probability that he
will select each alternative). With three two-way splits they come up
with a possible eight-way classification of theories--though a number
of these boxes are not filled. The classification that I would pro-
pose is somewhat different. First T would distinguish between normative
and descriptive theories; this corresponds in a rough way to Luce and
Suppes' distinction between algebraic and probabilistic theories. The
second distinction I would make is again concerned with certainty ver-
sus uncertainty though I would make this a three-way distinction. The
first would be decisions under certainty, the second would be decisions
under uncertainty with no opportunity to utilize information and third
are decisions under uncertainty that do involve the opportunitv to uti-
lize Information. The final distinction that I would make, zn? this is
of particular relevance to economists, is that between choices involv-
ing time and those that Jo not. With two two-wav classifications and
one three-way classitication [ thus come up with a total of 12 alter-
native boxes into which theories of individual choice behavior can be
put. It is not mv intention to pursue this classificaticn in detatl
but merely to state {t here at the outset to place things [n some per-
spective.

I would like now to indicrate in a very brief wav a number of the
areas in which theories now exist concerning indtvidual cholce hehav-
for. By far the best Jeveloped theory within econemics is that of

individual chofce behavior under certainty when the basic constraints
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are those determined by prices and income. The keystone of this theory
is the theory of consumer demand first developed by E. Slutsky and J.
Hicks. Another important area for economics 1is, as mentioned, the
theory of cihoice involving time. The work of Fisher in this area is
generally considered seminal and 1is discussed further in Section Two

of this dissertation.

siere are quite a number of alternative theories for choice under
uncertainty having no information component. Axicms characterizing
most ot these theories--under the provision that uncertainty be in some
sense 'total''--are succinctly summarized in Milnor's [7] well known
paper. The normative theory of choice under uncertainty involving no
information component thiat is now increasingly accepted, and the one
that I personally accept, was first sketched by Frank Ramsey [8] and
developed with axiomatic care by L. J. Savage [10]. It {is proved tha:
if individuals act in accord with the axioms of this theory they act
as though they were maximizing the expectavion of a utility function
against a unique subjective probability distribution. Von Neumann
and Morgenstern [15] provided the kev proof of the existence of the
utility function, though under the assumption that the probabilities
of the events were exogenously given.

In psychology, as one would expect, the emphasis has been much
more on descriptive rather than normative theories though there {s of-
ten a deliberate tendency to undermine this distfnction by such psy-
chologists as Luce and Suppes. . good dea® of psvchology has dealt
with tueories of information usage, that {s, how peoply process infor-
mation {n order to reduce uncertainty or change the state of their

belfefs. It (s easy to discermn twe main trends {n the psvel oleeical




iterature that deals with this in a somewhat formal way. The first

of these trends is in a school led by Ward Edwards at the University

of Michigan; their work has focused on studies of how Baves' theorem

is used by subjects in actual information processing tasks to update
their beliefs. A general conclusion is that subjects move in the di-
rection that the normative thecry would have them move but not far
enough--that is, they act as degraded Bavesian information processors.

A quite dit{. -ent school in psychology is much more in the tradition

of the stimulus response theories first developed early in the century.
These psychologists view learning as a Markov process, generally, though
there are a number of alternatives and extensions to this way of looking
at learning. Psychclogists now working in this field base much of their
work on early papers by W. K. Estes (see, for example [2]) and the book
by Bush and Mosteller [1].

Another tendency in psychology has been to attempt to formulate
descriptive (usually probabilistic) theories of choice under both cer-
tainty and uncertainty. A number of these theories were first put for-
ward by Luce [4] and a variety of theories of this sort--including some
developed by econcmists--are reviewed in detail by Luce and Suppe. [6].
A feature of most of these theories 1is some sort of attemp: to deal with
observed intransitivities ipn actual choices. One way of handling this
is to assign numbers (usually called 'response strengths') to each al-
ternative; the probability of making any particular choice is, then,
proportional to its response strength. Another way of handling this
problem is to use semiorders rather than weak orders on the underlying
preference space; Roberts [9] discusses the relations between these two

approaches.
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There is cne further class of studies concerning the theory of
individual choice behavior that I should add at this point. It does
not fit into one of the twelve boxes that I described previously since
it is much more concerned with the methodology of this type of study
than any particular study itself. These studies concerned the nature
of measurement and theory construction in general. An important re-
view paper concerning the theory of measurements uponr which many of
the mathematically oriented psychological studies are based is that
of Suppes and Zinnes [11]. 1In his paper entitled "On the Possible
Psychophysical Laws," R. D. Luce [3] characterizes the class of func-
tional ferms that are meaningful when velating scale types of different
strengths to one another through empirical laws. In a later paper
(Lnuce [5]) he extends this initial work.

In the preceding paragraphs I have attempted to give the barest
of thumbnail sketches of which of the boxes of alternative theories
of individual choice behavior have been worked on. In the remainder
of this introducrion I will give an overview of where the results re-
ported in this dissertation fit into that schema.

Section Two of this dissertation deals with choices involving
time. Empirical work concerming how people do in fact make cholces
involving time has been the province of both psychologistis and econ-
rmists. Economists have attempted to empirically estimate consumption
functions and psychologists have attemvnted to leok at a number of fac-
tors that influence an individual's willingness to delay gratification.
In Part Two/One there is a relatively brief overview of some of the

psychological results. In Part Two/Two I have attempted to provide
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a theory of choice invclving time but no uncertainty. The theory de-
veloped there rests on the observation that any discounting procedure
acts very much as a weighting procedure for utilities that is quite
analogous to the weighting procedure provided by subjective probabil-
ities. Thus an axiomatic system such as Savage's [10} provides a for-
mal basis for a theory of choice involving time but nc uncertainty.

In Part Two/Two, then, the Savage axioms are reinterpreted in a tem-
poral context and the meaning of the theorems for choice involving
time is stated. The crucial independence assumption that is required .%,7i
to obtain the numerical representation is discussed and it is pointed
out that this independence axiom is much less plausible for the inter-
temporal context than it is in the uncertainty context. The relation-
ship of the results obtained in Part Two/Two are then discussed in
comparison to results previously obtained.

In Part Two/Three I attempt to outline an axioma-ic framework for
choices that involve both time and uncertainty. The results obtained
there are rather limited and of two sorts. First, I look at choices
involving triples of the following form: (a, e, t,). Here a is in-
tended to be a prize of some sort, perhaps an amount of money, e is
an uncertain event upon which it is conditional, and t is the time at
which it occure. An example of such a triple would be the promise to
receive one thousand dollars in 1980 if Nixon is not reelected in 1972,
By extending some work of Tversky [12] I prove that cholce among tri-
ples of the sort ‘ust described can be shown to be reflected by dis-

counted expected utilities under rather plausible assumptions. However,

these assumptions are not sufficient to guarantee that the probability




weights attached to the random events form a probability measure over
the space of possible events., I next state axioms concerning the more
general inte.-temporal choice problem under uncertainty from which I
conjecture that voth a discount function and a subjective probability
measure can be derived.

Section Three of the dissertation deals with the relationship
between information and choice. Part Three/One is an essentially
normative study and Part Three/Two primarily descriptive. In Part
Three/One what I attempt to do is show how a thoroughly subjectivistic
concept of probability can be used to encompass ihe inductive logics
developed by Carnap and Hintikka. This is done by showing that the
inductive systems proposed by them can be shown to be special cases
of a properly formulated subjectivistic theory of induction based in
a straightforward way on Bayes' theorem.

Part Three/Two deals with statistical theories of learning of a
thoroughly descriptive sort. A broad range of theories of learning
is surveyed and many of the theories surveyed are considerably gen-
eralized. The most important generalization is t> allow for much
richer structures to be placed on the set of reinforcing ¢ .ents--
thereby bringing the theory in an important way much closer to prac-
tical reality., Most of the theories of learning that are developed
in that part are also developed there for the situation when there is
a continuum of response alternatives. This case is of particular rel-
evance to economics as most price and quantity decisions are of just
this sort. A number of these theories could be tested in simulated

economic situations by analyzing the data that Professor M. Shubik
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hopes to obtain from his computer based economics of imperfect com-
perition course series. The closing pages of Part Three/Two suggest
a general framework within which problems of learning and irference
can be discussed.

Section Four of the dissertation comprises a number of empirical
studies related to the issues brought up in Section Three. Part Four/
One is an attempt to determine the actual structure of a subject's
beliefs under circumstances of '"tctal" uncertainty. Essentially, a
subject is asked to specify his prior distribution for an unknown
probability when he is given no information concerning that probabil-
ity. These prior distributions are obtained for a number of different
numbers of states of the world. Part Four/Two reports on an experi-
ment performed on computer terminals at Stanford University to test
theories of paired-associate learning that attempt to describe com-
plicated structure placed on the set of reinforcing events. The task
set the subjects .'as sufficiently simple so that subjects were able
to approach In their performance what would be predicted by a rather
complicated normative model; curves showing the actual versus normative
perfor..unce of the subject are presented for a wide variety of con-
ditions. In Par Four/Three an attempt is made to investigate Infor-
mation seeking behavior of a particularly simple sort for subjects.
Even in the very simple case presented there, however, a normative
model of optimal decisions concerning whether or not to acquire infor-
mation 1s somewhat difficult to obtain. In coantrast to the results
of Part Four/Two, it turns out that subjects’' behavior {s not partic-

ularly well predicted by a normative model; nevertheless, there (s
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some increased tendency for subjects to acquire information when the
value of doing so is high.

The studies reported in more detail in what follows represent,
then, a somewhat heterogenous collection of essays concerning one as-
pect or another of the theory of individual choice behavior. Studies
reported are normative and descriptive, empirical and theoretical, and
both psycholegical and econczic. It would be nice to report that un-
derneath this heterogeneity there is an underlying unity aside from
that of general subject matter. I fear, owever, that there is no

such unity; my approach is more that of the fox than the hedgehog.
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Section Two

CHOICES INVOLVING TIME

If we classify any decision an individual must make according to,
first, whether or not it involves time and, second, whether or not {1t
involves uncertainty, each decision will fall within one of four pos-

sible categories:

1. Dacisions having certain outcomes and no time element,

2. Decisions having uncertain outcomes and no time element,

3. Decisions having certain outcomes that involve time, or

4. Decisiouns having uncertain outcomzs that involve time.

The theory of consumer demand traditionally deals with situation
1. The four or five postualtes for "rational" behavior under these
circumstances imply the existence of a utility function defined on the
set of outcomes (and unique up to an increasing monntonic transforma-
tion); the individual chooses as though he were maximizing utility
according to this function, subject to a budget constraint.

The oprimal procedure in situation 2 is presently a matter of
controversy. It is the author's belief that the axiom system of
Savage (28] (perhaps including modifications of Luce and Krantz*)
gives the clearest notion of rutionality for decisirns under uncer-
tainty. These axioms state conditions on an individual's preferences

wi.ich {mply that he acts as though he were maximizing expected utility

against a unique probability distribution over the states of nature.

———

*
R. D. Luce and D. Krantz, '"Conditional Expected Utility," un-
published manuscript.
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The utility function that is shown to exist is unique up to a positive
linear transformation.

This Section is concerned with the analysi- of situations 3 and
4. There appears to be a strong formal similaric, between decisions
under uncertainty that have no temporal element and decisions that do
have a temporal element but involve no uncertainty. This similarity
is used to analyze situation 3; the intuitive basis for the similarity
is as foilows: Ll:.ilities are calibrated in stronger-than-ordinal terms
by use of probabilities in the Savage theory, following the work of
Ramsey [26] and von Neumann and Morgenstern [35]. Consider three out-
comes, a, b, and c; and assume that a is preferred to b, and b to c.
Now assume that receiving b with certainty is indifferent to receiving
a with some probability p, and c with probability 1 - p. The magnitude
of p is, then, an index of hnw close in utility b is te a, relative to
how close ¢ is to a. This observation is central to the development
of cardinal utility theory.

A similar intuitive construction can be made for decisions {n-
volving time, but not uncertainty. Lot a be preferred to b, cad assume
that the {ndividual has a positive niie of time preferenes, t.e., he
prefers to advance the consumption of relatively desirable commedities.
Though the individual prefers a to b, it is reasonable to assume that
there exists a time t* such that he would prefer receiving b now to
recefving a at 8 time further than t* in the future. What the minimum
value of t* {x will depend both on how strongly the individual prefers
a to b and on the magnitude of his rate of time preference. Like know-

ing probabilities, knowing the magnitude cf the individual's rate of
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time praference would enable us to calibrate cardinal utilities. The
problem is to separate out tne effect on choice of time preference
from that of utility.

In Part Twe/Two of this dissertation the arguments outlined in
the preceding paragraph are treated more formally to provide a theory
cf decisions involving time but no uncertainty. Part Two/Three com-
prises an initial attempt to extend this analysis in a wav that ac-
counts for uncertainty.

Before turning to that formal analysis, however, I summarize a
number of empirical studies reported in the psychological literature
concerning how individuals actually do make choices involving time.
These studies contain minimal theoretical development (at least of a
formal sort) and thus contrast with the primarily theoretical develop-
ment of economists. The results of these studies suggest, moreover,
that there are a variety of determinants of inter-temporal choice be-
havior licttle considered hv economists. 1 wil!l further discuss one or
two of these problems for economic theory while summarizing the psv-

chological results in Part Two/One.

*
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Part Two/One

PSYCHOLOGICAL STUDIES OF CHOICE INVOLVING TIME

Over the last 10 years or so a number of psychologists have been
studying how people make choices involving time. The central theme of
research in this particular area has concerned the determinants of an
individual's willingness to choose a smaller immediate reward over a
larger later reward. In this part of my dissertation I will review
some of the findings of this school of research, then, in the second
section of this part, look at some of the determinants of willingness
to delay gratification. Finally I sketch very briefly an experiment
that I hope to perform at some later time to look into more decail

at methods of obtaining a quantitative neasure of time preference.

1. WILLINGNESS TO DELAY GRATIFICATION AND PUNISHMENT

Frofessor Walter Mischel of the Stanford Psychology Department has
been the researcher most interested in examining people's willingness
to delay gratification and reward. He has been publishing papers in
this general! area since the late 1950s; however, I will in this part
reviev ouly some of his most recont work which, by and large, super-
sedes that done previously. After reviewing three papers of his I
will diacuss briefly sowe of the irplications of those findings for
the type of economic theory of utility and time preference discussed
tn Part Two/Twa.

Mischel {20! provides a fairly extensive survey of the work done

in this area pricr to 1966. One rather systematic ~arly finding is




that the likelihood that the subject choose an early smaller reward

over a delayed but larger reward decreases as the time interval in-
creases betfore receiving the lirger delayed reward. They further found
that willingness to delay gratification for a later reward depends on

the relative magnitudes of the two rewards involved, very much as one
would intuitively expect. The bulk of tuls paper by Mischel is dedi-
cated to reporting results of five experiments that he and his co-workers
ad performed over the preceding several years.

In their first study they examined the effects of making attain-
ment of tne larger, later reward c--~ingent on successful performance
of an intermediate task. They fcund, not surprisingly, that the more
successful people had Leen in previously given similar tasks the more
likely it was that they be willing to delay for . larger reward. Also,
suhrjects with a fairly low level of self-confidence were rather more
apt to take immediate but lower rewards. Unfortunately, however, for
the purpose of studying the effects of pure time prefereace the extra-
neous variables in this experiment--uncertainty about successful com-
pletion of a task and the potential disut{lity of actually perferming
tt-—constderably confused the plcture. Nevertheless the direction of
the effects is very much as one would insuitively predick.

A sevond class of experiments lcoked at how uncertainty concern-
fng whether or not the later reward would actually be attalned affecteg
willingness t~ delay gratificaticn. This same sort of effect is ex-
amined in more detail in later experiments reported in Mischel and

Crusec {21},
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Once again findings were very much as cne would intuitively nope.
Increasing the probability that a subject would in fact obtain a later
but larger reward resulted in an increased likelihcod the subject would
choose that option. The theoretical formulations concerring the rea-
sons for the existence of impatience employved by Mischel and his co-
workers at this time was primarily centered arcund this uncartainty
aspect; the lesser probability of in fact attaining mcre distant re-
wards was ~onstrued as the primary reason for choosing smaller imme-
diate gratification. This study reports, however, no attempt to
quantify attitudes towards time preference or uncertainty nor does it
attempt to look at trade-offs between time preference and uncertainty.

A third class of experiments reported in this major article by
Mischel looked at attempts to modify subjects' willingness to choose
delayed gratifications. They were abi> to obtain rather large modifi-
cations in willingness to delay rewards with both live ard symbolic
models of rather diiferent behavior. (In the symbolic models the sub-
jects were simply told about the behavior of others who had to make
choices involving time.) The fourth and fifth experiments reported
in this survey by Mischel concerned how various forms of behavior of
models and characteristics of models influenced other aspects of a
subject's behavior than that of choice involving time.

As previously mentioned the primary reason ascribed by Mischel
and his co-workers for the existence of time preference was uncer-
tainty. They held this view through probably 1967 and many of the

experiments performed up to that time had uncertain later rewards

well as other intervening variables mixed into the experiments in
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way that confused the interpretation and the results somewhat. In a
very recently reported study by Mischel, CGrusec, and Mastars [22] the
existence of pure time preference is given a more central role and
they designed a set of experiments to look at just that effect. Again
their qualitative results are that the more a reward is delayed the
less likely it is to be chosen over a smaller immediate reward. How-
ever, there is one other aspect of their work that extends some of the
results reported in Mischel and Grusec and that is of cunsiderable
importance here. That is that they also looked at individual's willing-
ness to delay punishments., The results they find here are rather in-
consistent with a theory of inter-temporal choice based on discounting
future utilities or disutilities. First, among adult subjects, they
find that the length of delay time does not affect willingness to put
off punishment; adults in general preferred immediate punishment to
more delayed ones no matter what the length of the time interval. For
children, on the other hand, there seems to be no systematic relation-
ship between temporal considerations and punishment. Sometimes they
will cheose the delayed punishment, sometimes not. Apparently these
studies by Mischel and his co-workers are the first that look in any
detail at punishment and its effect on temporal choice if the time
intervals are of any length. They do discuss some previous results,
however, for very short time interval delays of punishment. For ex-
ample, they mention a study of Cook and Barnes [2] in which adults
were allowed to choose how long to delay an inevitable small shock.
The delay times availlable for choice were only on the order of frac-
tions of a minute. Almost invariably in these circumstances adults

chosz an immediate shock rather than delaying it.
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There are a number of things about these findings that are unset-
tling for economic theory. First, and in a sense more minor, there
are a number of exogenous seeming factors that do influence choice be-
havior under these circumstances. TFor example, a subject who has just
recelved a reward is more willing to undergo immediate punishment than
he would otherwise be. Also, subjects behavior is somewhat easily
modified by observation of alternative behaviors. 1In addition there
was some evidence that the order in which subjects made a number of
choices involving time would affect the outcome of his choices.

However, what I think is the most fundamental difficulty posed by
these results, is that subjects do seem to behave very differently with
respect to d. .aying rewards than they do with respect to delaying pun-
ishments. This seems to me to pose a very fundamental difficulty for
the theory of utility and time preference that is formally sketched in
Part Two/Two of this dissertation. According to the theory presented
there subjects with a positive rate of time preference should prefer
to delay punigshment as much as possible. This follows from the implicic
assumption that the point events that are studied in these experiments
represent simply reversals of two events within a time stream. That
is, there is the event of doing nothing and there is also the event of,
say, receiving a small shock and these two events are reversed in the
time stream. Since the utility of doing nothing is higher than that
of receiving a small shock, according to the standard utility analysis,
anyone with a positive rate of time preference would wish to delay the
shock as much as possible., Yet this is not observed. What this sug-

gests 1is that there is some sort of natural zero to the utility level,
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a result inconsistent with the general economists result of utility
being unique only up to a positive linear transformation. For with
the positive linear transformation there is, of course, no natural
zero level. The critical result is that the behavior of the subject
concerning events that have a utility below the zero level is quali-
tatively differs from his bechavior concerning events having a utility
above that zero level.

One intuitive way to look at this sort of thing is to assume that
any particular event does not have utility simply at the time that it
occurs which is then discounted back to a present time in order for a
person to make a decision., Rather, any event generates a time stream
of utility and each portion of that time str am is discounted to the
present. The cause of this time stream of utility is a memory of past
events and anticipation of future ones. (This way of looking at past
events having an influence on present utility is rather different than
that advanced by Charles Wolf in a recent paper. Wolf [37] is primar-
ily concerned with looking at how our past commitments and actions can
influence the utility of what we do now. What I am suggesting here,
on the other hand, is simply that we continue to enjoy now the memories
of pleasant past events and occasionally to blush over past mistakes.)

If we do assume that events cause these utility streams in time,
then, given that there 1is some sor. .ural zero to our utility
function, we can postulate rather different time streams for those
events with positive from those with negative utility. Intuitively I
expect two sorts of things. First, people will tend to more readily

forget unpleasant events than pleasant ones. Thus the disutility of
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a stream resulting from an unpleasant event we would expect to fall
off more rapidly than the utility stream generated by a pleasant event
of the same absolute magnitude in some sense. Second, future unpleas-
ant events tend to cauvse, I intuitively feel, more present fear and
anxiety than do future pleasant events cause presgent pleasure of an-
ticipation. Thus, the disutility stream of a future unpleasant event
should rise more rapidly than does the utility stream of a future
pleasant event.

What would be desirable would be to represent these utility dis-
tributions by functions having theilr mode at the time of occurrence
of the event in question and that distribute the utility from the event
over an interval of time. Further, that distribution should be skewed
toward the present for undesirable events and more toward the past for
desirable events. Clearly, however, a good deal more of both theo-
retical and empirical work needs to be done in order to make much prog-

ress with these notions.

II. FACTORS INFLUENCING AN INDIVIDUAL'S CAPACITY TO DEFER GRATIFICATION

Let me begin by quoting the ‘ntrospective and somewhat value laden
but interesting comments of Irving Fisher concerning the determinants

of impatience among individuals. On Page 89 of The Theory of Interest,

Fisher [6) asserts:

Impatience for income, therefore, depends for each individual on
his income, on its size, time shape, and probability; but the
particular form of this dependence differs according to the var-
ious characteristics of the individual. The characteristics which
will tend to make his impatience great are: (1 short-sightedness,
(2) a weak will, (3) the habit of spending freely, (4) emphasis
upoen the shortness and uncertainty of his life, (5) selfishness,

or the absence of any desire to provide for his survivors, (6)
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slavish following of the whims of fashion. The reverse conditions
will tend to lessen his impatience; namely, (1) a high degree of
foresight, which enables him to give to the future such attention
as i1t deserves; (2) a high degree of seif control, which enables
him to abstain from present real income in order to increase fu-
ture real income; (3) the habit of thrift; (4) emphasis upon the
expectation of a long life; (5) the possession of a family and a
high regard for their welfare after his death; (6) the indepen-
dence to maintain a proper balance between outgo and income re-
gardless of Mrs, Grundy and the high-powered salesmen of devices
that are useless or harmful, or which commit the purchaser beyond
his income prospects.

There appears to be little evidence available at the | "esent time

in the psychological literature to either substantiate or refute most
of the suggestions that Fisher makes, though there does exist specula-

tion even in early psychoanalytic literature--see Brenner [1, 50-52].
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However, concerning two potentlal determinants of willingness to save
there is some evidence, although not always clear-cut in its results.
The two areas for which there does exist evidence concern the rela-
N tionship of "achievement motivation'" to willingness to postpone grati~
fication and the relationship of socio-economic class to this.

I have been able to find two studies that relate socio-economic
class to willingness to postpone gratification. The first, reported
by Cameron and Storm [1A], looked a. achievement motivation and income
in middle and working class Canadian Indian children. They found that
a middle class child was more likely than Indian or working class

children of the same age to prefer large delayed rewards to smaller

immediate ones. In a rather more cubstantial study, however, Straus

[29] obtained different results. He tested willingness to defer grati-
fication in a population of over three hundred male high school students.
One of the three hypotheses that he was testing was: '"the higher the

socio-economic level, the greater the tendency to defer gratification.”
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Straus was unable to find any evidence to support the hypothesis that
there is a positive correlation between socio~economic status and will-
ingness to defer gratification.

A good fraction of the psychologists involved in study of willing-
ness to defer gratification have worked under the influence of the group
of psychologists currently studying "achievement motivation'”. 1In a re-

cent brief survey textbook entitled Motivation and Emotion, Murray [23]

iists five broad classes of human motivations, such as sex, hunger, and
thirst, etc. One of these classes was social motivations; under that
class he lists twenty different types of social motivations. One of
these twenty is achievement motivation, or need for achieveme:..t; this
particular type of motivation has been much popularized by the wide

success of the book entitled The Achieving Society, by David McClelland

[19]. McClelland's thesis is that wher a reasonably large number of
people in a soclety for some reason or another acquire a large need for
achievement, then things begin to happen in that society--particularly
entrepreneurial activity leading to economic growth. McClelland's ar-
zuments have been rather vigorously challenged in some c¢f the economic
Journals, although, I think, there i{s general agreement that his focus-
ing on the motivations of individuals within the societv leads to an
important way of looking at the determinants of economic growth. On
the other hand, a number of the psychological premises behind his work
have remained relatively unchallenged; in particular, 0is focusing al-
most exclusively on achievement motivation to the exclusion of a tre-
mendous variety of other possible motivations and his fajlure to look

at the correlations among motivations must be counted as a serious
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shortcoming in his work. It is sufficient to note here, however, that
one of the results of his book has been to stimulate a good deal of
research concerning the attitudes of people with high levels of achieve-
ment motivation toward delay of gratification. On Pages 324 through
329 McClelland summarizes some of his results concerning attitudes to-
ward time of people with high achievement motivation and a more up-to-
date summary of some of thege results may be found on Pages 41 through
45 of Heckhausen {[7]. Three separate studies cited by Heckhausen sup-
port the notion that measures of achievement motivation are positively
correlated with willingness to defer gratification. This result is
also borne out by the previously cited paper of Straus [29]. The third
of the hypotheses that he was testing was ''the greater the tendency to
defer gratification, the higher the performance on two measures of the

'achievement syndrone'."

He found some evidence to support this hy-
pothesis and concludes hi- paper with the following comment: ‘'Learning
to defer need gratification seems to be associated with achievement at
all levels of the status hierarchy represented in this sample, and
hence can probably best be interpreted as one of the personality pre-
requisites for achievement roles in contemporary American society.”
1 think that these results must be considered primarily as qualitative
tendencies of assouciation rather than any explicit precise correlational
findings. One reason for this 1ig the essentially ordinal nature of
measures cf achievement wotivation.

This concludes my comments on work that has been previously done

by psychologists measuring time preference and relating it to various

characteristics of individuals. In the work thit I have read so far

[y

ORPERNEAIINRE o1 oUW PGPSRt v S e b T A




-24-

by these psychologists I have seen no reference at all to the rather
extensive economic literature concerning time preference nor any ser-
ious attempt to formulate explicit quantitative models of the phenomena
being investigated. It does seem to me that some interesting experi-
mental results could be obtained by designing experiments in terms of
the theoretical structure developed in the next section of this paper
and the experimental techniques utilized by Tversky [32, 33] in the
formally very similar problem of measuring subjective probabilities.
What I would hope to do in these experiments is, first, demonstrate a
capability to provide a relatively clear quantitative measure of time
preference, and, second, to attempt to ~elate this measure in some
systematic way to various personality and soclo-economic variables
associated with the individual. Une question that will have to be
investigated is whether or not an individual's time preference can be
represented by a single rate--necessarily assumed to be constant--or
whether some vector of numbers will be needed to describe his dis-
counting pattemn for different time intervals. To measure personality
characteristics [ would plan to wovk in collaboration with Professor
Andrew Comrey of UCLA who has developed over the last ten vears a
rither comprehensive personality ianventory. Questionnaires would be
used and selective sampiing techniques to gain the scvcio-eccnomic back-
ground information and to select the appropriate pcpulations to obtain

that information from.
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Part Two/Two

FORMAL THEORY OF DECISIONS UNDER CERTAINTY INVOLVING TIME

I. THE AXIOMS OF THE THEQRY

Because of the similarity between the problem considered here and
that of decisions under uncertainty, Savage's axioms [23] are reinter-
preted in this contoxt below.

The basic subject matter of the theory is the following:

1. The set F of all points in time fror some initial! time into

the future,

2. A set T of time periods which are subsets of F such that F ¢

T; @ ¢« Ty if t, =« T, then F - ty f T; and if ¢, t, ¢ T, then

{ it ]
t, " t., ¢ Tand t, V t, ¢ T,

i i i i
3. A set X of comsequeriors whose elements are commodity vectors,
4., A set D of Ir»fuloms, each of which is a function from F into
X (D is assumed to include 11l ocomstp:? decisions, t.e., de~
cisions such that for some x[ and fer all v - F, Jd(t) = xi), and
5. A relation < on the set D.
The notation d X ¢ is int-rpreted as "d is not preferred to o.”
If d < e and e < {, then the tvo dJecisions will be sald te be indit-
ferent, dencoted d-~ e. 1If d - e, and not d~ e, then v will be said
to e strictly preferred to 4, Jonoted d < e, The symbols N and o are
defined in the obvious wav.
The axioms, listed below, are described on pp. 27 and 2%,

Axiom 1. ¥op 2l d, o, D, d- e mics f Te e d v f.

Ferwile, t v Dy e f or e,

o AL e, ke T
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Consider a time period B in T. A decision d is said to "agrec"
with e during B {f d(t) = e(t) for all t ¢ B.

Axiom 2. If B ¢ T and if for d, e, d', e' e D, the follawing
hold:

1. In F - B, d agrees with e an.d d' agrezs with e'

2. In B, d agrees with d' and e agrees with e'

3. d‘f e
then d' < e'.

Several new notions must now be introduced. If decisions d and
e are modified so as to agree in F - B (i.e., except during B) and if,
after modification, d: e, then d < e during B. (This definition is
legitimate by Axiom 2; that is, it does not matter what d and e are
modified to during F ~ B.) A time period B will be said to be Trreil-
ceuanit if for all d, e, « D, d~ e during B. A preference relation <.
on tie set of consequences X can be defined in terms of < in the fol-

lowing way: If x,, x : X, then x,

< x. tf and onlvy if for constant
i j 1 ~¢C ]

decisions di and d. such that, for all t, di(t) =X and dj(t} = X,

§
thee d, ~ d,.

{ ~ 3

Axtom 3. 77 e ocl7 00 B, 3t = ox oprid'te) = x', omd TG s
not Irrelensin, then d o dD o furieg B OO el vl T x e X
. ' - ~
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Axiom 5. For some x, x' € X, x <_ x'.

A temporal partition is a subset T* of T such that for every t ¢
F there is exactly one by ¢ T* such that t ¢ T,. A regular temporal
partition is a temporal partition T** such that the time perlods in T**
are intervals and of equal length.

Axiom 6. JSuppose x ¢ X and d, e € D with d < e. There exists a
terpcral partition ch that 17 d or e is modified on any time period
of the partition co take the value x for all t in that time period,
other time periods being wndisturbed, then the moditied d remains infe-
rior to e, or d remains inferior to the modified e, as the case may le.

These, then are the axioms of the theory. Axiom | is the obviously
necessary requirement that'f be a weak order. Axiom 2 is the 'sure-
thing principle” in the context of decision unier —ncertainty; here it
acts as a rather strong indepeudence assumption. (Axiom 2 is discussed '
in more detail in Section VI.) Axiow 3 simply states that if onec con-
seguence i inferior to another and two decisions are everywhere iden-
ticail except during onv relevant time period such that during that Cime
period, the first decision has the inferior consequence and the second
the superior one, then the first dectsion {s {cferier to the second

ane .

Axiom 4 makes possihle an ordering < among time periods: Ao B

- RN

can he read "A is more discounted than B." Consider twe conseguences
x and v such that x is definitely preferred to v.  let d\ he g deeision
4

such that x is the result during A and v is the result during ¥ - A;

h
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dB is similarly defined. 1If A and B ave time periods of equal length,
with A being in the near future and B in the far future, and the in-
dividual has a positive rate of time preference, then we wculd expect

dB < dA. OUr if A and B were at about the same time but B was consid-

erably shorter than A, we would expect db < dA' Assume that if for

one x and y pair y <. X implies d, < d,; then for all x and y such

B A
that y <_ X, dB < dA. We would then be justified in defining :0 in

the followine way: B <c)A if and only if dB < d Axiom 4 asserts

A"
this invariance of the ordering <o with respect tc the x and y chosen.

Axiom 5 is simply an assumption of nontriviality; only Buridan's
ass would have difficulty were Axiom 5 tc fail.

Axiom 6 is an assumption that temporal partitions can be made

exceedingly fine.
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II. THE PRINCIPAL THECREMS

The principal theorems of Part Two/Two follow directly from o

reinterpretation of theorems in Ref. 28. Hence, proofs will be out-

s,

lined only very briefly here. All of these thecrems assume Axioms 1

through 6.

Theorem i. There exists a wnique real-valued fumetion § defined

onn T such that <¢f A, 3 ¢ T:

Lo it

1. 8(A) < &6(B) if and only if Af,o B,

2. If A is irrelevant, 6(A) = 0,

3. &(F) = 1, and

4 IfANB =, 6(Ay B) = 6(A) + &(B) "
The proof of this theorem rests on noting that io acts like a qualita-
tive probability defined on T. Axiom 6 insures that this qualitative
probability is fine and tight; that in turn implies the existence of a
probability measure that strictly agrees with the qualitative probabil-
ity. This probability measure is intespreted here as the function §.

The following cerollary to Theorem 1 is perhaps more useful where
time preference is concerned.

Corollary 1. If T** is g regula}' temporal partition with elements
s By vees arranged in order, then there exists a unigue function A
defined on T** guch that:

1. A(cl) =1,

2. A(ti) < A(tj) tf and only ©f tif.o tj’ and

3. i: A(ti) < ®

i=1
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A function A satisfying conditions 1 through 3 will be called a
discount function. The proof of existence in Corollary 1 follows from
Theorem 1 and Axiom 6, which will give the countable additivity required
for part 3. The uniqueness follows from Theorem 1, establishing unique-
ness up to multiplication by a positive constant, and the normalization
of part 1.

There are a number of alternative axiomatizations for insuring that
a probability measure exists that strictly agrees with a qualitative
probability (see Fishburn [5]). However, it appears likely that apply-
ing those approaches to the time-preference problem would yield only
slightly different assumptions, under which essentially the same con-
clusions would follow.

Let us now examine the existence of a utility function. A deci-
sion d will be defined as constant on a time period, A, if there exists
a consequence x £ X such that d(t) = x for all t € A. From now on, we
shall consider only regular temporal partitions, T**, where the avail-
able decisions are constant on elements of the partition. It is clear

that if this is so, there is no ambiguity in writing d ) if tj e Tk*,

1 (8
A utility against A is a real-valued function U on X with the prop-

erty that if all d, € D are constan. on the elements tl, t2, vv. Of T*%,

i
and A is a discount function on T** then for all di’ dj € D the fol-

lowing is true:

00

3; % 4, if and only if 1; a(t,) Ul (£)] s 1; Bt Uld, (],

Theorem 2. If T** {g a regular temporal partition, A is a dis-

count function on T**, and all decisions are constant on etements of

ety ;49{;;9
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T**, then Axioms 1 through 6 imply that there exists a utility against
+
b.
Theorem 3. If U is a utility againet A, then U* i{g a utility
against b i1f and only if U* = alU + b, where b 78 any number and a is
any strictly positive number. '

The present utility of a decision d that is constant on the ele-

ments ti» t,, ..., of a regular temporal partition is thus defined in

the following way:

PU(d) = 2 8(t,) Uld(t )1,

ry

j=1

given a discount function A and a utility U.
In summary, then, Axioms 1 to 5 suffice to prove the existence of
measures of time preference, A, and utility, U, such that one decision

is preferred to another if and only 1. its present utility is greater,

+Theorems 2 and 3 are proven in Ref. 28 and little altered there
from the original proof of von Neumann and Morgenstern [35].
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ITI. ADDITIONAL RESULTS

This analysis has produced several additional results. Let us
first consider conditions that will insure a constant rate of time
preference. Here, a constant rate of discount defined on a regular
temporal partition T** means simply that if the elements of T** are,

in order, Bl s ey then A has the property that A(t

= q A(ti)

2’ 1+1)

for some constant a (necessarily < 1) and for i = 1, 2, .... If D is

a set of decisions constant on elements of a regular temporal parti-
tion T**, then the relation < on D is said to be stationary if when-
ever the elements d, e ¢ D are such that d(tl) = e(tl) and d < e, then
the decisions d' and e' formed by deleting the first-period consequences
in d and e and advancing the other consequences by one time unit (e.g.,

d'(ti) = d( ) are such tht d"i e'.

ti41)
Theorem 4. If T** is q regular temporal partition, if the mem-
bers of D are constant on elements of T**, and ifif is stationary, then
there 18 a constant rate of time preference.
The proof of Theorem 4 is analogous to a similar proof in Koop-
mans [10].
Another result from the theory of choice uunder uncertainty that '
can be applied to the intertemporal context is one due to Pfanzagl [24].
Let the elements of X be represented on a real continuum, e.g., the
values of x could be dollar-consumption income per unit time. Con-
sider a relation < on D that satisfies Axioms 1 through 6. For every
deD, define d' = d + X, for some X, € X; that is, the value of every

alternative is being enhanced by, say, X, dollars per unit time in

every time period. Pfanzagl's consistency principle asserts that the
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preference relation on d' is the same as that on d: Adding a constant
to every time period c¢f every decision in no way alters the preference
crdering among the decisions. In some ways a plausible assumption,
the consistency principle yields the following very restrictive re-
sult:

Theorem 5. If a choice structure satisfies Axioms L through 6
and Pfanzagl's consistency prineciple, and if X is an interval of a

real continuum, then U has one of the following two forms:

U(x) ax + b

or

Uix) = ax¥ + b

where a, b, and A are constants with a # 0 and X > 0.

The import of Pfanzagl's result is illuminated by Krantz and
Tversky's [12] proof that the consistency principle is a consequence
of ayioms concerning how adding to or subtracting from the outcomes
of decisions would affect the relative desirability of those deci-
sions.

LaValle [14] has generalized Pfanzagl's results to a situation
he calls multivariate constant risk aversion. 1f the elements of X
are indexed on a real continuum, and there are a finite (this could
be extended to denumerable) number of time veriods, then LaValle's
results can be used to obtain (fairly restrictive) sufficient con-

ditions for < to be represented by a utility function of the form:
cd
e , or

PU(d) = { cd, or

-cd
e
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where d is a vector whose components specify the amount received in
each time period, and ¢ is a column vector with nonnegative components.

The present utility is unique up to a positive linear transformation.
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IV. THE ASSUMPTION OF INDEPENDENCE

An assumption of independence is implied in Axioms 2 and 4, which

assert that there is no complementation or substitution across time

periods and that there can be no preference for variety for its own

TN 7 S5 T

sake. These assumptions are necessary both to obtain a measure of time
preference in the first place and to calibrate utilities, given the 5
discount function.

Some of the stronger disadvantages of these assumptions can be
avoided in the following ways: First, the elements of the consumption
set X may, as previously noted, be regarded as access to rather than
acquisition of commodities. For example, buying a new car and keeping
it for four years would be regarded in this scheme as access to a new
car the first year, a one~year-old car the second year, etc. This
approach avoids some aspects of material interdependence; nevertheless,
the possibility that consumption during one time period cen affect the
utility of consumption in other time periods cannot be ruled out. The
problem of variety can be partly mitigated by allowing the components
of members of the set X te be mixtures of the form "in New York three-
fourths of the time, in Paris one-fourth.”™ Extensive use of this ap-
proach would, however, make matters hopelessly unwieldy.

Economists traditionally favor nonrestrictive (i.e., weak) assump- ’ {
tions; as a consequence, they generally achieve weak results. To obtain
the fairly strong result that the effects of time preference and utfilit-
may be separated and measured requires the strong assumption of i{nde-

pendence.

N
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How can this assumption be justified? As a descriptive assumption,
its advantage is that it yields a relatively tractable, testable theory.
However, both introspection and ca3ual observation of the phenomena of
complementation and substitution suggest that in many circumstances the
theory presented hare will be at best only approximately valid. What-
ever descriptive value this theory may have can only be assessed in the
presence of data and alternative theories to account for those data;
therefore we should not rule out independence as an empirical assumption
that may be reasonably valid in some circumstances, invalid in others.

Can independence be justified as an assumption in creating a norm-
ative theory? Again, the answer is probably '"yes'" in many--but obvi-
ously not all--circumstances. Applied decision theory provides a body
of techniques that will assist decisionmakers faced with complex alter-
natives. Analyses such as this can then assist by breaking complicated
decisions into simpler ones--for example, by ignoring interdependencies
among time periods and discounting. It must be decided in each case
whether the conceptual clarification of the problem resulting from the
abstraction gains more than the information ignored loses. The in-
creased utilization (and advocacy) of present-value decision criteria
suggests that in many decision situaticns the simplification i{s worth-
while. However, acsuming that independence will in many cases be only
an approximation sets this theory apart from that of Savage {n an im-
portant way. In the uncertainty context, the independence assumption
has sufficient intuitive force that the Savage system may be considered
unconditionally normative; the time-preference interpretation can be

considered only approximately normative.
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V. DISCUSSION

The theory developed herein is related in various ways to other
theories of inter-temporal choice. Perhaps the best known anong econo-
mists is that of Fisher [6].* My work here abstracts away from
discussion of market and physical investment opportunities, all of
which are subsumed in the consumption streams available within the
set D. The present study adds toc earlier work in its capability to
crisply separate pure time p aoference from the utilitv of money, as
these variables enter into economic choice (a distinction which is
impossible tc make precise within the approach of Fisher). This same
point is also the primary advantage of the present theory over a re-
cent axiomatic theory of Lancaster {13].

Samuelson [27] pointed out that if we assume that a declsionmaker

maximizes present value of utility and that he discounts ".,.in some

1t

simple regular fashion that is known to us...," then, by observing

his actual choices, "..,we shali be able to deduce the actual shape

of the utility function, invariant except for a linear transformation

¥k
i3

cenl The principal conceptual advance of the theory presented in
this dissertation over Samuelson's is that, instead of assuming the dis-
count function to be known, it is shown to be conjeintly measurable

with the utilicy function. Enzer [4] independentlv, but almest thirty

vears later, obtalned results very similar te these of Samuelson; the

—————n

*
See also Hirshleifer's [8] extensicon of Fisher's theory.

*
This seems a rewarkable observation to have been made ten vears
before The Jhecry of Saxwe and Foowmamo Retavior, 2d ed.

~
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relationship between the present theory and those of Enzer and Samuelsonn
is discussed furthe: in Ref. 18.

Williams and Nassar [3h] ai.. Fishburn* discuse ways of obtaining
discount factors without considering cardinal utility. Koopmans, Dia-
mond, and Williamson [11] place axioms oa inter-temporal utility func-
tions that guarantee "impatience' and 'time perspective' as properties
of the utility functions. However, their studv does not involve axioms
concerning preferences that will insure the measurabilitr of time pref-
erence and utility. Koopmans {10] has recently extended his previous
work to consideration of axioms concerning preferences. Koopmans proves
a theorem that, essentially, guarantees the measurabiliiy of time pref-
erence and utility. The principal difference between Koopmans' approach
and my approach i{s that by way of Axiom 6 I am able to provide suf-
ficient fineness to the set of temporal rartitions to prove the ex-
istence of a discount function thst strictly agrees with the qualita-
tive relation "is more discounted than''. Kocpmans, on the other hand,

proceeds by adding what Lu - and Suppes [17] call a ap-ora:

stmectural
waw rion=—in his case, the assumption of stativnarity--te guarantee
the existeace of a strictly agreeiny discount function. The station=-

arity assumption is analogous (in the probability context), t» an as-

sumption of cquiprobable atomic events. This dissertation presents a more

general approach than that of Keeopmans in that the rate of discount need
nat he constant or, in the short run, even positive. (Corollary | as-

sures that it is positive is the long run.) Another difference {s that,

P. C. Fishburn, "t70 71, The pu e fe el meMiiie:, unpublished
manuscripe.

ay




unlike the author, Koopmans assumes anc uses a continuous structure on
the set X of outcomes.

It must be emphasized that the present work represents but a lim-
ited step in the direction of aderstanding choice involving time. The
problem of uncertainty, discussed in aore detail in the next part, has
yet to be thoroughly resolved; and the interrelated problems of con-
sistency of choice and desire for flexibility in future choice also
remain, Axiom < (independence) should be further examined: Can an
interesting representation be proved if it is weakened? How can memory
and anticipation (both crvcial to understanding inter-temporal cholce)
be taken into account? To what extent is the type of theory presented
here intended to be descriptive? What are the psychological experiments
or economic observations that would support or refute it? And tc what
extent is this sort of theory suppceed to be normative, i.e., how can
it be profitably woven into the fatric of applied decision analvsis?

These, then, are a few of the gquestions that remain to be answered
through future research in this area. It is hoped that the theory pre-

sented here will provide a useful step tow.rd such solutions.

e sserriiy
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Part Two/Three

FORMAL THEORY OF DECISIONS
UNDER UNCERTAINTY INVOLVING TIME
In this Part I attempt to extend the analysis of Part Two/Two to
situations where the options available to a decision-maker involve un-
certainty as well as time. My analysis here has two aspects. First
I look at a particularly simple class of intertemporal uncertain options
and prove a somewhat weak result concerning them. Next I state axioms

that I conjecture will suffice for the general case.

I. THE DISCOUNTED EXPECTED UTILITY MODEL FOR SIMPLE OPTIONS

Consic. - a set A of prizes (e.g., amounts of money), a set E of
uncertain avents, and a set T of future points in time. An "option"
is a set of triples of the form (a, e, t) with a€ A, e* E, and t €
T. A "simple" option is an option containing only one triple. An
individual will be said to choose among options in accord with the
discounted expected utility (DEU) model if there exist real valued
functions u on A, p on E, and d on T such that one option is preferred
tc ancther if and only if its DEU is greatar. The DEU of an option is
is the sum over all triples (a, e, t) in the option of the product
u(a)p(e)d(t).

My purpose in this section is to state a very simple thecrem that
indicates when the DEU model holds for simple options. This result -y
a straight forward extension of some vesults of Tversky [33] concerning

what I would call simple options having no time component.
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Let 0 be the set of simple options, that is, 0 = A X E X T. Let
P be a preference relation on 0; the structure {(0,P) will be called
"additive" if there exist functions f on A, g on E, and h on T such

that for all oi, oj « 0, o,

i |4 ojo-t f(ai) + g(ei) + h(ti) > f(aj) +

r = il Y . 0
g(ej) + h(tj), where o, (a1 ;v 50 ete The structure (O,P)
will be called Luce-Tukey (L-T) additive if it obeys the axioms of

Luce and Tukey [18] as modified by Luce [16]. (The relevant modifi-

cation extends the two factor results of L-T to any finite number of

factors-—-three for the case considered here.)

THEOREM. For simple options the DEU model is satisfied if and

only if (0,P) is additive.

PROOF. This proof requires only minor modification from that of
Theorem 1.3 in Tversky {33]. First assume (0,P) is additive. Then
there exist functions f, g, and h such that (a, e, t) P (d', e', t")
if and only if f(a) + g(e) + h(t) > f(a') + g(e") + h(t'). Let U(a) =
exp [f(a)}], p(e) = exp [g(e)], and d(t) = exp [h(t)]. Clearly, then,
(a, e, t) P (a', e', t') if and only if U(a) p(e) d(t) - U(a') ple')
d{t') and thus the DEU model is satisfied. Next assume the DEU model
is satisfied. By taking logs of the uv, p, and t assumed to exist it
is easy to show the existence of an additive representation, which
completes the proof.

It is clear, then, that the L-T axioms, since they suffice for
additivity, imply the validity of the DEU model for simple options.
What the axioms assert, very loosely speaking, is that: (i) P is a

weak order; (ii) that given a,a', e,e', and t there exists a t' such
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that (&, e, t) is indifferent to (a', e', t'), and similarly f~r the

set A and set T; (iii) for each component the ordering induced on the
set of which that component is a member by varying that component is

independent oi the values at which the other two components are held;
and, (iv) there is a rather fine structure to the sets A, E, and T.

On the surface these axioms seem rather plausible, though if (i1)
is to be accepted events regarded as impossible must be exciuded from
E. (Alternately, Luce [16] weakens (ii) in a way such that this sort
of restriction on E weould be unnecessary.) In addition to the plausi-
bility of the axioms, an attractive feature of the model is its empic-
ical testabili y; this is the sort of model I plan to use for the ex-
periment outlined at the end of Part Two/One.

The model has one serious drawback, however, that Tversky doesn't
seem explicitly aware of. The drawback is that p need not be proba-
bility measure and d need not satisfy certain term structure properties
required for a discounting function. Additional axioms are required
to get these results and in the next subsection of this Part I will

try to indicate (though I cannot prove) how this should be done.

II. SIMULTANEOUS MEASUREMENT OF PROBABILITY AND TIME PREFEPENCE

As in the preceding paragraphs I shall in this subsection attempt
to use the additive model of Luce and Tukey as a basis for the repre-
sentation desired. The basic subject matter comprises a set T of
points in time, a set E of events, and a relation > on H = T* X E*%,
where T* and E* are algebras of subsets of T and E. The set H is the

set of "happenings'; the intuitive notion here is that if one receives
PP g




a prize "

on" h = (t*, e*)= H then one has access to that prize (may
use the prize) during all t & t* if event e* occurs. If h& H then so

is ~h, where ~h happens 1f ~t* or ~e*. That is, ~h happens if h fails

to happen; since both T* and E* are algebras, then h& H implies ~h& H.

Consider now two prizes, p and q, with p really preferred te q.
Cousider also two happenings h = (t*, e*) and h' = (t*', e*') and let
us say that we are faced with choice between two options. In option 1
we get p if h happens or q if ~h happens; in option 2 we get p if h'
happens, q 1f ~h'. What are the considerations that would lead us to
chioose cption 1 over option 2? If for both h and h' we had access to
the prize at the same time (i.e., t* = t*') clearly we would prefer
option 1 if we judged e* to be more likely than e*'. On the other
hand, if e* = e*' we would tend to prefer option one, given a positive
rate of time preference, if t* were sconer than t*' and they were of
about equal length, etc. In sum, we would judge option 2 inferior to

option 1 if h' were less totally discounted than h. If h' is less

totally discounted than h, I will denote this by h'.f h.

(I am choosing to take < as a primitive relation here. It would
be possible, in the manner of Savage [28], to include the set of prizes
in the basic subject matter of the theory and have the primitive re~
lation be that of preference among acts. If that were done, an axiom
would be required to assure that, in the language of my previous dis-
cussion, if option 1 were preferred to option 2 for any p and q (with
p definitely preferred to q), option 1 would be preferred t~ option 2
for all p' and q' if p' were preferred to q'. A theory including the
set of prizes would not really be more general than ihe one I am dis-

cussing. The reason is that once discount weights have been assigned

RO Y L. ’
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to each h &€ H, these weights can be used to calibrate cardinal util-
ities in the marner of von Neumann and Morgenstern [35]. This is
essentially what Savage does anyway.)

My basic intention here 1s to place axioms on the structure (H,
T#*, E*, <) that will do the following: (i) guarantee the existence
of a probability measure p on E*, (ii) guarantee the existence of a
discounting function d on T*, and (iii) for h = (t*, e*) and h' =
(t*', e*') € H, have h <h' if and only if d(t*) p(e*) = d(t*') p(e*').
I cannot at present state axioms from which I can prove the desired
representation. However, my conjecture is that the following general
stategy will suffice.

First, apply Luce's [16] modification of the L-T system to the
structure (H, T*, E*¥, <). This modification will allow there to exist
elements that cannot be compensated, for example, the probability of
the null event. From these axioms it is clear that functions f and g
on T* and E* exist that satisfy property (iii) in the pa aigraph above.
Also, it is clear that there exist weak orders on T* and E* that corre-
spond tc the notions of "more discounted than' and 'more probable
than'". We can add new axioms for these weak orders to obtain the re-
quired probability and discount measures, p and d. (An attractive set
of axioms are those of Luce [25]; the same axioms will serve for both
p and d becausa2 of the formal similarity between probability and dis-
count measures that was pointed out in Part Two/Two.)

The basic rcmaining formal problem is this. The functions f and g
satisfying the additive c¢crjoint measurement are clearly monotonically

consistent with the functions p and d, since they represent the same




underlying weak order. However, p and d are unique. The question

then is: do there exist f' and g' satisfying the conjoint axiomat-
ization such that f' = p and g' = d? It seems intuitively clear to

me that the answer here is ''yes', for the following reason. Interpret
T as well as E as & set of random events and have the members of T be
probabilistically independent of E. Then the set H is the set of joint
events and clearly the ordering of the probabilities of the joint
events will be consistent with the ordering induced by the product of
the probabilities of the component events. Thus I do feel that I will
be able to eventually prove the conjecture with which L close Section

Two.
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Section Three

INFORMATION AND CHOICE

Uncertain events generally determine the outcome of a decision-

n
i

maker's choice; this indeterminateness introduces a need for modifi-

A‘%’ R

cation of a number of formulations of classical economic theory. This @
reformulation may be of a rather simple technical character--Debreu [22], N

4
for example, simply redefines a commodity to include the event upon 3

which its transfer is conditional. All the theorems concerning eco-
nomic equilibrium in a certain world apply directly to this newly de-
fined world in which all uncertainty is accounted Jor. The reason
tils approach seems so intuitively unsatisfactory is, 1 feel, due to
its failure to systematically consider information as a commodity.
Arrow [4] has reviewed a number of studies of how treating information
as a commodity affects economic theory and I would cast some of the
questions raised in the fcllowing form:

1. How can we quantify information?

2. What are characteristics of information as a commodity that
set it apart from other commodities? To what extent do these
characteristics raise diff{iculties for economic theory?

3. How is information optimally used?

4, How 1s information actually used?

Section Three of this dissertation {s primarily concerned with

que_tions 3 and 4, though there are also some comments on 1. In Part
Three/One 1 examine aspects of the normative problem posed by question

3 and in Part Three/Two 1 examine and develop a number of descriptive

theories of information usage, or theories of learning.
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Normative Theories 3£ Information Usage. Arrow [3, p. 13} has

stressed that ''the influence of experience on beliefs is of the utmost
importance for a rational theory of behavior under uncertainty, and
failure to account for it must be taken as a strong objection to theories
such as Shackle's.'" 1In the paragraph preceding this comment Prof. Arrow
implicitly indicates that this rational theory would, in his view, con-
sigt essentially of consistent utilization of Bayes' theorem. This 1is

a view vigorously denied by some philosophers, for example Fatrick
Suppes [65]}, who contends that concept formation or insightful inference
1s in some scnse rational and cannot be accounted for in terms of Baves'
theorem. (I should note that the Baves' theorem view is also supported
by a number of phiiosophers, most prominently Prof. Carnap {17, 18], and
that in most respects the views of Suppes are rather close to Carnap's
on these matters.) This issue of the sufficiency of Baves' theorem for
a rational account of belief change seems to me to raise two questions:

1. What conceptual alternative is there to Baves' theorem?

[£%]

To what extent can clever use of Bayes' theorem account for
'rational’ seeming concept learning behavior?

I know of no positive answer to question 1. One of (“e major purposes
of Part Three/One is to provide a partial answer to qu-tion 2, that is
to show that Bayes' theorem may well be applicable i{n certain concept
learning tasks., I feei that Baves' theorem is not the end of a theory
of rational information usage but rathe: its begzinning. The ifssu~s to
pursue are how does cne characteri{ze the event spacve in such a wav that

any structure it mav have becomes apparent and how docs one assign prior

probabilites over that space; the results in Part Three/Gne denend on
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doing this in specific ways. (The assertion that assignment of priors
is a valid aspect of a theory of rational choice is, incidentally, the
primary distinguishing feature between adherents of 'logical' and
'personalistic' theories of probability--see Carnap [19].)

I must say that I see no way at present of integrating the material
of Part Three/One into the mainstream of economic theory. As an obvi-
ously essential aspect of the theory of individual choice behavior it
stands on its own as a component of microeconomic theory. The question
remains, however, of whether this approach will prove suggestive in
addressing any larger economic issues such as, for example, determinants
of investment in research and development or dissemination of new tech-

nique.

Descriptive Theories of Information Usage. Since the early 1950s

mathematically formulated theories of information usage (or learning)
have played an increasingly important rcle in psychology. In 1958
Prof. Arrow [2, p. 13] predicted that these theories would have a

i major influence in economics: ''Learning is certainly one of the most
important forms of behavior under uncertaintv. 1In this field, recent
work is giving rise to results which may have very striking impact on

., economic thought." I think it fair to say that this prediction has
not yet been borne out. There seem to me tc be three major reasons

for this:

First, in attempts to provide empirically adequate theories, psy-
chological theorists have introduced a complexity into their choice
models that renders them difficult to integrate into more aggregate
theories. Luce and Suppes [41A, p. 253] stress this point: "While

being elaborated as distinct and testable psvchological theories, the




{hae sy oaf prefererce Pinciunding Jea ning] have hepun to acquire a
richness and complexitv--hopefully reflecting a true richness and com-
plexity of behavior-~that renders them largely useless as bases tor
ecenenic and statistical theories. Perhaps we may ultimately find
simple, yet reasonably accurate, approximations to the more exact de-
scriptions of behavior that can serve as psychological foundations for
other theoretical developments, but at the moment this is not the main
trend."

Second, since detailed theories of learning and choice are most cen-
trally the concern of the psychologist, economists have probably felt
little need to do active research in this area. This contrasts sharply
with detalled studies of firm behavior; though such studies are natural
analogs of detailed gtudy of individual cheice behavior, there is no
other discipline specifically concerned with those problems. Thus the
study of firm behavior is a more natural focus for economic research.

Third, theories of learning have general.iy been constructed only
for highly artificial tasks with information structures of an unusually
unrealistic sort., [t is primarily for this last sort of reason, I feel,
that learning theory has had almost as little serious application in
educatio~ as it has in economics.

The primary purpose of Part Three/Two 1s related to lessening the

thrust of the third comment above. 1In that part a variety of new theo-

retical medels are presented to account for situations dealt with in
previous work in learning theory. Then the class of situations con-
gidered is broadened to include analysis of situations where there is
only incomplete information of various types in the reinforcement set.

This sort of incomplete information is much more typical of econcomic




situations in both consumption and producticen than i+ the complete in-
formation case. Nevertheless, even the models treated here can oanly
be considered rather abstract idealizations of real 1ife behavior.,

One possible scurce of data for testing t...cse models In a more
realistic environment aight come from the pa ‘tially computer based
microeconomic tiieory course that Martin Shubik and R. Levitan are de-
veloping. 1Included in this course will be 20 exercises (of sbout an
hour's length) at a computer based teletype. The student will be isked
to take the role »f, say, a monopolist and will be forced to make the
sort of price, quantity, advertising, etc. decisions that a monopolist
must make. The student will make a series of decisions receiving along
the way information concerning the consequences of his previous de-
cisions. Prof. Shubik told me that one of his purposes in constructing
this course is to obtain detailed empirical information concerning in-
dividual choice behavior where the individual 1is acting as represen-
tative of a firm. Certain of the models developed in Part Three/Two
may be of use in aralyzing this data, particularly those models assuming
a continuum of response alternatives.

t~r me end th~ . - - “istery ~cmment- © this Section bv suer  *7-=e
the possibility that there may in the future develop a theory of general
economic equilibrium based on descriptive stochastic models rather than,
as at present, on normative deterministic ones. The elements that need
to be integrated in a systemtic way are: (i) stochastic theories of
preference and learning, (.i) stochastic theories of the firm, such as
that ploneered by Newman and Wolfe {47A], and (iii) stochastic theories

of market adjustment such as I am now working on--Jamison [36].




Part Three/One

INFORMATION AND INDUCTION: A SUBJECTIVISTIC
*
VIEW OF SOME RECENT RESULTS

T.  INTRODUGTION

We might distinguish between inductive and deductive inferences
in the following way: Deductive inferences refer to the implications
of coherence for a given set of beliefs, whereas inductive inferences
follow from conditions for 'rational’ change in belief. Change in
belief, I shall argue in the subsection II, is perhaps the most philo-
sophically relevant notion of semantic information. Thus rules govern-
ing inductive inierences may be regarded as rules for the acquisition
of semantic information.

I have four purposes in this part. First I shall attempt to pro-
vide 3 definition of semanti:z information that is adequate from a sub-
jectivist point of view and that {s based on the concept of information
as change in belief. From this I shall turn to a subjectivistic theory
of induction; the second purpose of this work is to suggest a solution
to the inductive problem that Suppes [62, pp. 514 - 515] points out to

lie at the foundations of a subjectivistic theorv of decision. (By this

Footnotes in this part are numbered consecutively and appear at
the end of the pa.t.




I do not mean to suggest a sviution to the inductive problem of Hume;

Il would a:rce with Savage [57] that the subjective theory of probabil-
{ty simply cannot do this.) The third thing I wish tc do is to show

how Carnap's continuum of inductive methods may be easily interpreted

as a special case uvf tne subjectivistic theory of induction to be pre-
sented, Finally, I provide a subjectivistic interpretation of Hintikka's
two dimensional inductive continuum, and show how this is related to the

problem of concept formativn.
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11,  SEMANTIC INFORMATION AND INDUCTICN

Two Noticns of Semantic Informaticn

Two alternative notions of semantic information are reductica in

uncertointy and change in belier. Reduction in uncertainty is, clearly,

a special case of change in belief. Information is defined in terms of
probabilities; hence, one's view of the nature of probability is inev-
itably an input to his theory of intormation. As there are thr.o prom-
inent views concerning the nature of probability--the relative frequency,
logical, and subjectivist views--and there are the two concept- of infor-
mation just mentioned, we can distiuguish six alternative theories of

information. Table 1 arrays these theories.

Table 1 Theories ¢f Information

—— —— — e e e e e e

concept of Concept of Probability

Informatiou

Relative Frequency Logical Subjective
Change in
Belief CR CL CS
Reduction of
Uncertainty RR RL RS

— e ——

RS, for example, would be a theory of information based on a sub-
jectivist view of probability and a reduction of uncertainty approach
to {nformation. The development of the RR theory by Shannon [58] has

provided the formal basis for most later work. Carnap and Bar-iiillel [20]
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developed RL and Bar-Hillel [8,9] hints at the potential value of
developing what I would calil RS or CS, though his precise meaning is
inclear. Siced's [61] discussiun or “pragmaric informativeness' is
related. Smokler [59] as well as Hintikka and Pietarinen [27] have
further developed RL.

An undesirable feature of RL is that in it logical truths carry
no information. For example, solving (or being told the solution of)
a difficult differential equation gives you no new information. This
is a result of accepting the "equivalencs condition,"” ramifications
of which are discussed by Smokler [60]. R. Wells [72] has madv an
important centribution to the development of RS by beginning a theory
of the information content of a priori truths. To continue the ex-
ample ahove, wk-1lls allows that the solution to the differcnttal equa-
tion msy, ¥ndeed, give information. R. A, Howard's [30] iper on
"information value thecry' develops RS in a decision-theoretic context,
deriving the value of clairvoyance and using that value as the upper
bound to the value of any information. McCarthy [43] has also devel-
oped a class of measures of the value of RS information.

Two further works concerning semantic information and change in
belief should be noted. MacKay [42] has developed techniques of in-
formation theory to analyze scientific measurement and observation.
His view :.y be considered a change in belief view, In a more recent
work Ernest Adams [1] has develen~d a thenry of measurement in which
fnformation theoretic considerations play an important role. It seems

to me that one interpretation of his approach would be that (he purpose

of measurement is simply the attaimment of semantic {nformation, though
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auams Would not agree with this. Throughout Adsms uses a frequency

Interpretation of »robability.

Initiating a CS Theory of Information

What seems to me to be the wost natural notion of semantic {nfor-
mation is change in belief as reflected in change in subjective pro-
babilities. That is, I would regard CS as the most fundamental entry
in the table shown above, at least from a psychologist's or philosopher's
point of view. There are two primary redsons for this. The first is
that change in belief is a more general notion than reduction of yn-
certainty, subsuming reductior in uncertainty as a special case. The
second is that reality is far too rich and varied to be adequately
reflected in a logical or relative frequency theory of probability.1
Let me now turn to definitions of belief and information,

Consider a situation in which there are m mutually exclusive and
collectively exhaustive possible states of nature. Define an m-1 dimen-
sioned simpiex, ~° , in m dimensioned space in the following manner:

< - { 1 ?151 =land £ 20 for 1 <igm } . The vector
{=

¢ - (fl, =2: ceny Fm) intuitively corresponds to a probability distyri-
bution over the states of nai.. v ’1 " . probability of the {th
state of nature. = 13 the set of all possible probability distribu-‘
tions over the m states of nature. For these purposes a belief may be
simple defined as a subjectively ieli. vector : « Measurement of be-
lief is an example of "fundamental' measurement and the conditions
under which such measurement is poc-{ble are simply the conditions that
miz - obtain in order that & qualitative probability relation on a set

may be represented by & numerical measure. Information {s an example

of "derived"' measurement,




Reby (58] has an interesting discussion of belief siaies defined
in this wav. Let _; be a person's beliefs bSefore he receivaes some
informetion (or message) M, and ;' his beliefs afterwards. The
notion of message here is to be Iinterpreted very broadly -- it may be
the result of reading, conversation, observation, experimentation, or
simply reflection. The primary requirement of a definition of the
amount of information in the message M, inf{M), is that it be a

(strictly) increasing function of the "distance" between f and ',

Perhaps the simplest defirition that satisfies this requirement ias:

m
tne) = [F - €] =Y g -t )
i=l
A drawback to this definition is that the amount of informaticn
is relatively insensitive to m. Ccnsider two cases where in the first
me4 and in the second m = 40, In each F, = 1/m for 1 < i <m

i

and Fl = 1 and E; = 0 for 1 > 1. It would seem that in some sensge

in the case where m equaled 40 a person would have received much more

'

inform tion than {f m had equaled nd the Shannon measure of informa-
tion, 1 2, ample, reflects this intuition., However, for m = 4, the
information received as defired in (1) i{s .876, and for = = 40 {t {s
.989, a rather small dicference, An alternative definftion, that takes
care of this defect, {s:

inf(M) =

ﬂ@ - 1
"-mz(m-l) F-F l (2)

The apparent complexity makes some mmbers come out nicely; from the
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preceeding example, whon m = 4 the 'nformation corveyed as measured
by (2) 1s 2. For m = 40, it is 20.

The definitions in equations (!) and (Z) are meant merely to show
that a CS theory of information can be discussed in a clear and formal
way. Implications of these definitiuns -- or alternatives to them =--
must await another time, as the rest or this par~r will be concerned

nrimarily with induction.

Semantic Information and Induction

For purposes of discussing induction we might consider three
levels of i.ductive inference. The first and simplest level is simply
conditionali~ation or the updating of subjective probabilitics by
means of Bayes' thecorem. That this is the noruatively proper way vo
proceed in some instancee seems undeniable. A more complicated level
of inductive inference concerns inferences made on the basis of the
formation of a concept. The highest level of induc.ive inferences are
inductions wade from scientific laws, by which I simply mean mathema-
tical models of natural phenomena. The distinction between the second
and third levels of i{nferencc is tha" models have parameters to be
evaluated whereas concepts do nct.

A question of son~ interest concerning philosophical theories of
induction is whcther some form of Bayesian updating will suffice for a
normative account «f {nductive bchavior at the second and third levels.
Suppcs [HH] answers the question just agked with a clesr "no."” Hc
summarizes his position in the following way:

“"The core of the probiem 18 developing an adequate

psychological theory to describe, analvze, snd predict the
structure imposed by crganiems on tae bewildering complexitics




of possible alternatives ci~g them. I hope I have made
it clear that the eimple ..ncept of an a priori distribu-
tion over thege alternatives 18 by no means sufficient and
does little toward offering a sclution to any comp’ex

problem."
Suppes ever suggests that in cases where Bayes' theorem would fairly
obviously be applicable a person might not be irrational to act in some

other way. While I cannot e2o the rationale for this, the poi.ts he

makes about concept formation and, implicitly, about the congtruction

of scientific laws smeem well taken, To put this in the context of our
discussion of semantic information I would suggest thar a concept had
been formed when a person acquires much semanti~ information {i.e.,
radically rearranges his beliefs) on the bagis of small evidence,

In the following two sectiong of this paper I deal with inductive
inference of the simplest sort. In the final secticn of the paper I
attempt to show tha. Suppes' pessimism concerning a Bayesian theorv of

concept formation is partially unjustificd.
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I1I. A SUBJECTIVISTIC THEORY OF 1NDUCTION

My “tscussion of induction will be formulated in a decision-
theoretic framework, and I will digress to problems of decision theory
here and there. The discussion of decisions under total ignorance
forms the bagis for the later discussion of inductive inference, and
the intuitive concepts of that subsection should be understood, though
the mathematical detezils are not of major importance.

211 esgentials of a subjectivistic theory of induction &re con-
tained in Bruno de Finetti's [23] classic paper. The probability of
probabriities approach developed here can be tranglated (though not
always simply) into the de Finetti framework; the only real justifi-
cation for uaing probabilities of probabilities is their cenceptual
sinplicity. The importance of this simplicity will, I think, be illus-~
trated in Sections IV and V,

A trivle P = < D, 0, U > may be considered a finite decigion
problem when: (i) D is a finite set of alternative courses of action
avail ble to a decision-maker, (i1) () is a finite set of mutually
exclusive and exhaustive possible states of nature, and (iii) U is a

function on D X () such that u(di, w,) is the utility to the decision=

p

maker if he chooses d1 and the true state of nature turns out to be

w A decision proce'ure (sclution) for the problem P consists either

j.
of an ordering of the dis ‘~cording to their desirability or of the

specification of a fubset of D that contains all d, that ar> {n some

i
sense opu.imal and only those di that are optimal,




R

If there are m states of nature, a8 vector 7 = 51,...,Fm) is a

poss’ >le probability distribution over ~ (with prob(w,) = Ej) if and
m

3
only if Eg; Ej « 1 and r} 20 zorl <§j <me The set of all possible
probability distributions over (0 , that i{s, the set of all vectors
whose components satisfy the above equation and set of inequalities
will, as in the preceeding section, be denoted by = . Atkingon, Church
and Harris [5] assume our knowledge of ¥ to be completely specified by

asgerting that E € Eo’ where EB CE=E. If 2 =X, they say we are in

[¢]

111

complete ignorance of E . In the maanner of Chernoff [21] and Milnor {46]
Atkinson, et al, g.'e axioms stating desirable properties for decision
procedures under complete ignorance. A class of decision procedures
that isoiates an optimal subset of D is shown to exist and satisfy the
axioms. These procedures are non-Bayesian in the sense that the cri-
terion for optimality is not maximization of expected utility. Other
non-Bayesian procedures for complete ignorance (that fail to satiafy
some axioms that most people would consider ressonasble} include the
following: minimax regret, minimex riek (or maximia utility), and
Hurwicz's o procedure for extending the minimax risk approach to non-
pessimists.

The Bayesian alternative to the above procedures attempts to
order the d1 according to their expected utility; t : optimal act is,
then, simply the one with the highest expectes . “i{lity. Computation
of the expected utility of di' E u(di), is straightforward i{f the
decision-maker knows that Eo is a set with but one element -- F *:

)

*
E u(d,) = Z: u(d,, w,) £, . Only in the rare instances when con=-
SR v T S

sidersble relative frequency data exist will the decisionemaker be

sty
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ablc to assert that %y has only one element, In the mcre general rnase

the decision-maker will be in "partial" or "total" ignorance concern=
ing the probability vector ¥, It is the purpose of the next two sube
sections to characterize total and partial igtorance from a Bayesian

point of view s~d to show that decision procedures based on maximiza-

tion of expected utility extend rezdily to these cases.

Decisions Under Total Ignorance

Rather than saying that our knowledge of the probability vector
? is specified by asserting that v e Eo for some Eo, I suggest that it
is natural to say that our knowledge of ¢ is specified by a density,
f({l,...,sm), defined on ©. If the probability distribution over -
18 known to be © t then f is a ¢ function at E * and computation of
Eu(di) proceeds as in the introduction. At the other extreme from
precigely knowing the probability distribution over -~ is the case of
total ignorance. In this sub-gection a meaning for total ignorance
of F will be discussed. In the following subsection decisions under
partial ignorance -- anywhere between knowledge of E and total ignor-
ance -~ will be discussed.

1f H(;s is the Shannon [58] measure of uncertainty concerning
which w in ™ occurs, then H ) = Eﬂi logz(llFi), where H(;) is
meszgured in bits. When this uncertainty is a maximum, we may be
congidered in total ignorance of w and, as one would expect, this
uvccurs when we have no reason to expect any one w more than another,

i.e., when for all 1, €, = 1/m. By analogy, we can be considered in

total ignorance of ¢ when H(f) -ff f f(:) 10R2(1/f(:)) d= is a
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maximum. This occurs when f 18 a constant, that is, when we have no

reason to expect any particular value of £ to be more probable than

N

any other (see Chap. 3 of Shamnon). If thexe is total ignorance con=-

.
AT

cerning E, then it is reasonable to expect that there is total ignore-

ance concerning w =« and this iz indeed true (if we substitute the

3 Il S

expectation of gi, E(gi), for 5i)'3 Let me now prove this last asser-

S

tion, which is the major result of this sub~-section. While thie could
be proved using the rather general theorems to be utilized in my dis-
cussion of Carnap, I think it is intuitively useful to go into a little
more detail here.

Proving that under total {gnorance E(gi) =« 1/m invoives, first,
determination of the appropriste conntant value of f, then determination
of the marginal density functions for the g8 and, finally, integratien
to find E(Fi).

Let the conatant value of f equal K; since f is 2 denaity the

integral of K over = must be unity:

I :J' K d= = 1, (3)

where d= = dgyeeedf o Our firset task is to solve this equation for K.
Since f is defined only on a section of a hyperplane in m dimensioned
space, the above integral is a many dimensioned 'surface' integral,
Figure 1 depicts the three dimensional case. As ;g; Et w1, S is

-

determined given the previous mel gis and the integration need only be

Ingsert Figure 1 About Here
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over & region of m=1 dimensioned space, the region A in figure 1. It
is shown in advanced c#lculus that d= and dA are related in the follow

ing way:

2 2z

/
3
. -%/< (,‘3:.”' x) ) . . (B(xl,..., xm—l)) i
a(gi’ooo. E 1) a"l'...' E‘n'l)

where X, is the function of Epoeses ’m-l that gives thc ith component

of £, that {s xi(.) -t for 1 less than or equal to m=1 and xi(.) ]
l1- Fy = see = gmnl if { = m, It can be shown that each of the m
quantities that are squared under the radical above is equal to either
plus or minus one; thus 42 = /m dA . Therefore (3) may be rewritten

18 follcws:

I f .A. I K/oidA =1, or

I:TI-EI . fl"gl"""am-z

The multiple integrsl in (4) could conceivably be evaluated by
iterated integration; it iz much simpler, however, to utilize a tech-
nique devised by Dirichlet. Recall that the gamma function is d:fined
in the following way: I'(n) » j' L4y forn20. If n s a
positive integer, M(n) = (n«l)JO and 0! = 1, Dirichlet showed the
following (see Jeffreys and Jeffreys [39], pp. 468-470): If A is the
closed region in the first ortant bBounded by the coordinate hyperplanes

Pz "

P
and by the surface (x1/°1) 1‘* (lecz) + 00 (xn/cn) " 1, then
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For our purposes, ¢; *py = a, = 1, for 1 S i < m and the mel Fis
replace the n xs. The result is that the integral in (4) becomes
1/T(m) = 1/(m=1)!. Therefore K = (m=1)! /m/m.
Having determined the constant value, K, of f we must next deter-
mine the densities fi(?i) for the individual probabilities. By sym-
i metry, the densities must be the same for each ’i. The dengities are
| the derivatives of the distribution functions which will be denoted
Fi(ti). Fl(c) glves the probability that ?l is less than c¢; denote
by F:Ec) the probability that "L 2% that is, Fl(c) =] . F:(c) is
simply the integral of f over Te where Ho is the subset of =

*
including all points such that =1 2 ¢c. See Fig. 2. Fl(c) is given by:

A
<

R = [ ... [ ea - [Joee TR man . (6)
c

Since K = (m-1)! /m/m, (6) becomes (after inserting the limits of

integration):

RELIN L e
P:(c) = (1! [ [ ...fo 1 m zd'm_ldrm_z...dr.l . N

(2]
o
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(1,0,0)

Fig. 2-- EE. the subset of =

such that ;l 2c.
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A translation of the F, axis will enable us to use Dirichlet integra-

1
tion to evaluate (5); let ?i - 51 = ¢. Then Pi + =2 45:1. + ;m-l = l.c,
or Ei/(l-c) + Ezl(l-c) + ...+ =m_1/(1-c) = 1 (since Eg; FL =1 is the

boundary of the region A). Referring back to equation (5) it can be
sdeen that the c,s in that equation are all equal to l-c and that,
therefore, the integral on the r.h.s. of (7) is (l-c)m'llr(m). Thus
F:(c) = [(mol)!(l-c)m.lj /T(m) = (l-c)m'l. Therefore Fl(c) -l
(l-c)m-l. Since this holds if ¢ is set equal to any value of ’1
between 0 anc 1, El can replace ¢ in the equation; differentiation

gives the probability density function of 51 and hence of all the £,8s:

£,(7) = (meD)(1-2)™2, (8)

From (8) the expectation of =1 1s easily computed--
1
E (Fi) - [; !1(m-1)(1-ri)m-2. Recourse to a table of integrals will
quickly convince the reader that E (fi) = 1/m. Figure 3 shows fi(Fi)

for several values of m.

------- e cecasnesn YhetaeRee BSan o

Insert Figure ) about here

Besegseascans= cSessowewmn CEeracunecaase

Jamison and Kozielecki [37] have determined empirical values of
the function fi(Ei) for m equal to two, four, and eight.* The exveri-
ment was run under conditions that simulated total uncertainty. The
results vere that subjects underestimated density in regions of rela-
tivity high density and overestimated it in regions of iow density--

an interesting extension of previocus results.

SIS

N
This vork appears as Part Four/One of this dissertation--see
pp. 174-189.
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. m
Let u(di,’) - :E: fj u(di’wj)' Then the expected utility of di
i=1
is given by:
Eu(d) = | | e [ Rute Pam (9)
m m -
This is equal to ;;% E(fj) u(di,wj) - (1/n1)§: "(di'wj)’ since u(di,:)

j=1
is a linear function of the random variables Ti'

of total ignorance adopted herein, we arrive by a different route at

Thus, taking the view

the decision rule advocated by Bernoulli and Laplace and axiomatized

in Chernoff [21].

Decisions Under Partial E;porance

Part{al ignorance exists in a given formulation of a decision if
we neither know the probability distribution over ¢ nor are in total
ignorance of it. If we are given f(?l,...,im), the density over =,
computation of Eu(dl) under partial {gnorance is in principle straight-

forward and proceeds along lines similar to those developed in the

previous section., Equation (9) ¢s modified in the obvious way to:
Eua) = [ [ oo [ £hua e (10)

If £ {s any of theclarge variety of appropriate forms indicated just
prior to equation (5), the integral in (10) may be easily evaluated
using Dirichlet integration; otherwise more cumbersounse techniques must
be used.

In practice it scems clear that unless the decision-maker has

remarkable intuition, the density f will be most difficult to specify
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from the partial information at hand. Fortunately there {8 an alter-
native to determining £ directly.

Jeffrey [38, pp. 183-1907, in discussing degree of confidence of
a probability estimate, deacribes the following method for obtaining
the distribution function, Fi(fi), for a probabilicy.4 Have the deci-
sion-maker indicate for numerous values of "y what his subjective
estimatc is that the "true" value of i is less than the value named.
To apply this to a decision problem the distribution funct!on-~and
hence fi(’i)--for each of the fis must be obtained. Next, the expecta-
tions of the ’is must be computed and, from them, the expected utili-
ties of the dis can be determined. In this way partial information is

processed to lead to a Bayesian decision under partial ignoranc..

It should be clear that the dccision-maker is not free to choose
W

the fis subject only to the condition that for each fi’ fi(=1)dfi -1,

0
Consider the example of the misguided decision-meker whe believed

himself to be in total ignorance of the probability distribution over
3} states of nature. Since he was in total ignorance, he reascned, he
must have a uniform p.d.f. for each e That {s, fl(fl) - fz('z) a
f3(f3) =1 for 0 < fi < 1. 1If he bgolieves these to be ¢ »,i.1 . .. .

should be willing to simultangously take even odds on bets that . » 1/2,

1

¢, > 1/2, and 7, > 1/2. 1 would gladly tnke thcse three bets, for

2 3

under no cond{tions could 1 fail to have a net gain. This example
illustrates the obvious--certatn conditions must be placed on the fi’

{n order that they “e coherent. A necessary condition for coherence is

indicated oeriow; 1 have not yet derived sufficient conditions,
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Congider a decision, d,, that wiil result in a utility of 1 for

k
each wj' Clearly, then, Eu(dk) = 1, However, Eu(dk) also equals
E(Fl)u(dk,ml) + L.. E(=m)u(dk,wm). Since for 1 < 1 < “(dk'wi) =1,
a necessary <ondition for coherence of the fis is that ;g; (El) =1,
a reasonable thing to expect. That this condition 1 nct ;ufficient is
erasily illustrated with two states of nature. Suppcs: that fl(fl) is
given. Since =2 1., f2 ‘v uniquely determined given fl.
Howev:r, it is obvious that infinitely many le will satisfy the con-
dition that E(‘z) =1 - E(Fl)’ and 1f a person wer= to have two dise
tinct fzs it would be easv to make a book against hiw; his beliefs
would be incoherent.

If m {8 not very large, it would bc possible to obtain condi-
tional densities of the form fz(fZEPI,, fE(E3!t1.Ez), etc., in a
anner analogous to that discussed by Jeffrey. If the conditional

densities were obtained, then f{€) would be given by the following

expression:

f(F) - fl(Fl)fz(F\zlgl) .o fm(Fm'EI.EZ’ L) ’Em-l)' (11)

A suff.cient condition that the fis be coherent is that the infegral
of £ over = be unity; if it differa from unity, one way to bring about
coherence would be to multiply f by the appropriate constznt and then
find the new fis. If m is larger than 4 or 5, this method of insuring
coherence will br hopelessly unwieldy. Something better is needed.

At this point I would like to discuss alternatives and objections
to the theory of decisions under partial information that is developed

here. The notion of probebility distributions over probability
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disrributioas has been around for a long time; Kanight, Lindall, and
Tintner explicitly used the notion in economics some time ago (see

Tintner [71].5 This work has not, however, been formulated in terms of
decision theory. Hodges and Lehmann [28] have proposed a decision rule
for partial ignorance that combines the Bayesian and minimax approaches.
Their rule chooses the di that maximizes Eu(di) for some best estimate

(or expectation) of E, subject to the condition tha: the minimum ucility
possible for di is greater than a preselected value. This preselected
value is somewhat less than the minimax utility; the amount less increases
with our confidence that E is the correct distribution over (3. Ellsberg

[24], in the lead article of a spirited series in the Quarterly Journal of

Economics, provides an elaborate justification of the Hodges and Lehmann
procedure, and I will criticize his point of view presently.

Hurwicz [32] and Good (discussed in Luce and Raiffa [41], p. 305)
have suggested characterizing partial ignorance in the same fashion that
was later used by Atkinson, et al., [S]. That is, our knowledge of ¥ is
of the form E € =, where Fs is a subset of =, Hurwicz then proposes-that
.we proceed as if in total ignorance of where E is in A In the spirit of
the second section of this paper, the decision rule could be Bayesian with
E(E) = K for z € =, and f(E) = 0 elsewhere, Hurwicz suggcsts instead utili-
zation of non-Bayesian decision procedures; difficulties with non-Bayesian
procedures were alluded to in the introduction to subsection III.

Let me now try to counter some objections that hawe been raised
agaiunst characterizing partial ignorance as probability distributions

over probabilities. Ellsberg [24, p. 659) takes the view that since

representing partial ignorance (ambiguity) as a probability distribution
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over a distribution leads to an expected distribution, ambiguity must
be something different from a probability distribution. I fail to
undergtand this argument; ambiguity is high, it seems to me, if f is
relatively flat over = , otherwise not. The "reliability, credibi-

lity, or accuracy" of one's information simply determines how sharply

peaked f is. Even granted that probability is somehow qualitatively
different frow ambiguily or uncertainty, the solution devised by

fodges anua Lehmann [28] and advocated by Ellsberg relies on the

decision-maker's completely arbitrary judgment of the amount of ambi-
guity present in the decision situation., Ellsberg would have us hedge
against our uncertainty in ¢ by rejecting a decision that maximized
utility against the expected distribution but that has a possible oute
come with a utility below an arbitrary minimum. By the same reascning
one could "rationally" choose d1 over d2 in the non~ambiguous problem
below 1f, because of our uncertainty in the outcome, we said (arbi-

trarily) that we would reject any decision with a minimum gain of less

than 3.

! 2

d1 l 5 5
F()) = E(F)) = .5 N 5

d2 1 25

I would reject Ellsberg's approach for the simple reason that its
pessimistic bias, like any minimax approach, leads to decisions that

fail to fully utilize one's partial inforwation.

Savage [56, pp. 56-601 raises two oblections to second-order

probabilities. The first, similar to Ellsberg's, is that even with

T NPT LT R A T
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second -order probabilities expectations for the primary probabilities
remain, Thus we may as well have simply arrived at our best subjective
estimate of the primary probability, since it is all that is needed for
decision-making. This is correct as far as it goes but, without the
equivalent of second-order probabilities, it is impossible to specify
iiow the primary probability should change in the light of evidence.

", ..once second-order probabilit:es

savaue's sccond objection is that
are introduced, the introduction of an endless hierarchy seems ines-
capable. Such a hierarchy seems very difficult to interpret, and it
seems at best to make the theorv less realistic, not more,”" Luce and
Raiffa [41, p. 305) express much the same objection. An endless hier-
archy does not seem inescapable to me; we simply push the hierarchy back
as far as is required to be 'realistic.' In making a physical measure-
ment we could attempt to specify the value of the measurement, the probable
error in the measurement, the probable errcr in the probable error, and
on out the endless hierarchy, But it is not done that way; probable
errors usually seem to be about the right order of realism. Similarly,
I suspect that second-order probabilities wiil suffice for most circum-

6 , . . . .
stances. However , i1, discussing concept formation in Section V, I shall

have occasion to use what are essentially third-order orobabilities,

Induction

The preceding discussion has been limited to situations in which
the decision-maker has no option to oxperiment or otherwise acquire in-
formation. When the possibility of experimentation is introduced, the

number of alternatives open to the decision-maker is greatly increased,
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as is the complexity of his decision problem, for the decision-maker
must now decide which experiments to perform and in what order, when
to stop experimenting, and which course of action to take when experi-
mentation is complete, The problem of using the information acquired
is the problem of induction,.

If we are quite certain that E is very nearly the true probability
distribution over ), additional evidences will little change our beliefs.
If, on the other hand, we are not at all confident about E -- 1% £ is
fairly flat -- new evidence can change our beliefs considerably. (New
evidence may leave the expectations for the gis unaltered even though
it changes beliefs by making £ more sharp. In general, of course, new
evidence will both change the sharpness of f and change the expecta-
tions of the gis.) Without the equivalent of second-order probabilities
there appears to be no answer to the question of exactly how new evidence
can alter probabilities. Suppes [62] considers an important defect of
both his and Savage's [56] axiomatizations of subjective probability
and utility to be thelir failure to specify how prior information is to
be used. Let us consider an example used by both Suppes and Savage.

A man must decide whether to buy some grapes which he knows to be
either green (ui)’ ripe (ub), or rotten (¢2). Suppes poses the fol-
lowiug question: If the man has purchases grapes at this store 15 times
previously, and has never received rotten grapes, and has no informa-
tion aside from these purchases, what probability should he assign to
the outcome of recelving rotten grapes the 16th time?

Prior to his first purchase, the man was in total ignorance of the

probabili ty distribution over (;. Thus from equation (8) we see that
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the density for g3, the prior probability of receiving rotten grapes,
should be f3(g3) - 2 - 2;3, Let X be the event of receiving green or

ripe grapes on the first 15 purchases; the probability that X occurs,

given €,, is p(X|gy) = (1 - g7

. What we desire is f3(§3[X), the
density for 53 given X, and this is obtained by Bayes' theorem in the
following way:
1
£4(g,|%) = p<XIg3>f3<g3)/S p(X|g,) £ (2,)de, (12
0
After inserting the expresslons for f3(g3) and p(X g3), equation (12)
become s :

(2 - 20 )ae,

1
£ (850 = (1 - g2 - 253)/8 (1 - &
0
Performing the integration and simplifying gives f3(§3|X) = 17(1 - §3)16;
from this the expectation of g3 given X can be computed --
B(§3’X) = 17.i g3(1 - g3)16 = 1/18. (Notice that this resuit differs
from the 1/17 that Laplace’'s law of succession would give. The differ-
ence is due to the fact that the Laplacian law is derived from consider-
ation of only two states of nature--rotten and not rotten.7)
My purpose in this section was to show why second-order probability
distributions are useful in thinking about subjectivistic theory of in-

duction, and I have outlined the nature of such a theory.
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IV. SUBJECTIVISTIC INTERPRETATION OF CARNAP'S INDUCTIVE SYSTEM

Rudolf Carnap [16] has devised a system cf inductive logic that
fits within the framework of the logical theory of probability.* The
purpose of this section is to show that_Carnap's syetem can be inter-
sreted in a straightforward way as a special case of the subjectivis~
tic theory of induction presented in the preceeding section. That it
gan be so interpreted does not imply, of course, that it must be so
interpreted, Let me begin by informally sketching Carnap's ) conti-

nuum of inductive methods.

Carnap's )\ System

Carnap's system is built around a "language' that contains names
of n individuals -- Xys Koy ooy X = and n one place primitive
predicates -- Pl’ PZ’ cony P‘_Y « Of each individual it may be said
that it either does or does not instantiate each characteristic, i.e.,
for all i (1 <i <n) and all j (1 < § < m), either Pj(xi) or 'Pj(xi)'
1 is "is red," then x, 1is either red or it isn't,

A "Q - predicate' is defined as a conjunction of n primitive

if, for example, P

characteristics such that each primitive predicate or its negation
appears in the conjunction. Let . by the number of Q-predicates;
clearly, . = 2" . The following are the Qepredicates if n = 2:

Pl & P2 = Ql

Pl &'Pz .Qz

(13)

PPy =Q,

‘Pl & 'Pz -Qa .

*
In a still unpublished manuscript Carnap [18] extends his original
gystem in a number of ways, some similar to those suggested here.
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1f P, 18 "is red" and P, 18 "is squareY then, for example, Qa(xi)

1

meand that x

2

{ is reither red nor square, etc.

The Q properties represent the strongest statements that can be

TP PR

£

made sbout the individuals in the system; once an individual has been
agserted to instantiate a Q-predicate, nothing further can be said

about it within the language. Weaker statements about individuals may

it PR e

be formed by taking disjunctions of Q-predicates. To continue the
preceeding example if we let ¥ = QIVQBVQ], then H(xi) is true if Xy
is either red or square or both. Any non-selfcontradictory character-
istic of an individual that can be deacribed in the laanguage can be
expressed as a disjunction of Q-predicates.

The logical width, w, of a pradicete, say M, is the number of
Q-predicates in the disjunction of Q-predicates equivalent to M. Its
relative width is defined to be w/x. If M is as defined in the pre-
ceeding paragraph, its logica’ width would be 3 and its relative width
3/4. A predicate equivalent to the conjunction of all the Q-predicatess
in the system is tautologically true and its relative width 1is 1. The

logical width of a predicate that cannot be instantiated (like P, & -p,)

1
is zero. In some sense, then, the greater the .elative width of a pre-
dicate the more likely it is to be true of any given individual.
Notice that the relative width of any primitive predicate, Pj' is 1/2,
whatever the value of n .

Let us turn now to the inductive aspects of the system. Suppose
that we are interested in some property M and have seen a sample of

size s of individuale, s, of whom had the property M. What are we to

think of the (logical) probability that the next individual th-: we
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observe will have the property M? Carnap suggests that two factors
enter into assessing this probability. The first is an empirical factor,
'1/" which i{s the observed fraction of individuals having property M.
The second .5 a logical factor, independent of observation, and equal
to the relative width of M -~ w/x . A weighted average of these two

factors gives the probability that the s+lst individual, x__ ., will

s+l
have M. One of the factor weightings may be arbitrarily chosen and,
for convenience, Carnap chooses the weight of the empirical factor to
be o. The weight of the logical factor is given by a parameter A

() may be some function A(,), but we need not go into that). Thus we

have:
prob(M(x__,) is true) = (s, + M/x)/ (s + X) (14)

The limiting value of the expression in (14) as 1 gets very
large is w/«, {.e., only the logical factor counts. If, on the other
hand, A = 0 then the logical factor has no weight at all and only
empirical considerations count., Thus the parameter )\ indexes a conti-
nuum of {nductive methods -~ from those giving all weight to the logi-

cal factor to those giving {t none.

A Subjectivietis Ingespretation of the ) System

There are « = 2" Q-predicates in the Carnap system. The Q-
predicates may be mumbered Ql' ces, Qr. Let gi
probability that any individual will instantiate Qi' The probabilities

be the (subjective)

't may be unknown and, following the precedent of the preceeding

section, ve may represant our knowledze of these probabilities by a

density f defined on . . Since 7 « 1 - £g = eee =" X the density
LA ™
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need only be defined on a » - 1 dimensioned region analogous to the
region A in figure 1. The densities we shall consider will be Dirichlet
densities, so let us now define these densities and examine some of
their properties.

The « = 1 variate Dirichlet density is defined for all points

(El. ceny F\-l) such that €, 2 0 and :E: £, < 1. The density has .
im
parameters <= v, eccep, VT and is defined as follows:

M(zvy) vyl v -1 v-1
G N I — v i B (Lerimeeeer D, (15)
1 =1 nr(vi) 1 el 1 <=2

where the sums (57) and products {71) are over all the v , and the I'
i

denotes the gamma function. Let us let v, = )/« for 1 <i <. and

i

see what happens. First we need two theorems proved in Wilks [73,
pp. 177-182":

Theorem 1. If fi is a random variable in the density given in

x
(15) then E(* ) » v,/ ~ v
Theorea 2. If (r‘,...,'4_‘) {s & vector random variable having

1'

a +-1 variate Dirichlet denatftv with parameters Vistera s then t.e

v

randon variable (:l,..., :.) vhere 2, = © +...+ .+

1 1
.I.+

3yt et

| 4 sesey - .+ 4 » d 4. ® “ u'l.
3%, Yo T 0 gty MM N )

has an s variate Dirichlet distribution with parameters Gl,..., ﬂ.*x

VhQN 8 -\ *ocq* v

1 l J‘.ou.. 8..\1 ..otV

jl+...+j.-l+l jl¢...4j.'

and 9 -\

eea® v .
.+l A" A%

S R *
Pinally we need orc wore standard theorem about Dirichlet distri{-

butions that concerns wodification of the density by Bayes' theorew
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1. the light of new evidence. This theorem too will be state! ~ithout
proof.

Theorem 3. If 91,...,= are the probabilities of the Q-

vel
predicates Ql""’ Qr-l’ and 1if 1'F1-'..-:x-1 is the probability of

Q , if the prior density for the f,6s is a Dirichlet with parameters

i

VysesesV s and 1f an observation of s individuals is made in which s,

have property Qi (c s, = 8), then the posterior density for the ¢ s

i

is a Dirichlet with parameters vj,..., v' where v; =y +s for

1<t v,
With this mathematical apparatus at hand we can reauily show that
Carnap's ) continuum is formally identical to a subjectivist inductive

system when the prior on the 48 is a Dirichlet density with all its
parameters equal to '/, i.e., v, = A/v for all 1.8

i
Congider first induction involving only Qe-predicates rather than

more general predicates., When s = 0 -- before we make any observa-
tions -- by theorem 1 E (Pi) = 1/, for all {. 1If we observe a sanmple,

X, of size s, in which Qi appeares s, times then, by theorem 3,

i
vi - (M) + o and r»{ » (/) + 3. By theorem 1 again:

‘J; |t4\/.

E(F |0 &~ = (16)
2,
] °

Since the logical width, v, of & Q-predicate is 1, (16) {s clearly the
same as (14) when the predicate M referred to there is a Q-predicate.
To deal with predicates more complicated than Q-predicates we

need theorem 2. Congider a predicate M with logical width w; -M, then,
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e -

s

has lugical width .-w. By theorem 2 the prior density function for

u (the probability of M) will be the one variate Dirichlet (or beta)
density with parameters v, = wi/« and v, " (- ~w))/x. By theorem 1

the prior expectation of gH 18 what it should be:
E (EM) - (\n/') (V‘/A + (K-U)\/() L U/x.

If we observe a sample X, of size s, that has a total or o instances
of M {and, thereforz, s-8, instances of -M) then v{ = w\/» + s, and

vi  (c-w)A. + 8 - s, Using theorem 1 again we obtain:
E(F | X =y / (v +v)) = (s + /) (s +2), (17)

which is essentially the same as (14)

Leaving aside debate concerning the relative philosophical me:'ts
of the logical vs. subjective views, the subjectivist approach has two
{mportant advantages over the * system. Thes: are:

1. In the Carnapian system v, * VJ for all { and §,; this clearly

much reduces the range of possible prior distributions. Or, to put

this another way, Carnap's 1 dimensional contf{nuum of inductive methods

{s a special casc of a . dJimensional centinuum,

2. Second, {t may bc desirable to have predicates in the lan-
guage that are not dichotomous., Pov example, instead of saying of
x, that it is red or not red, we may wish to say that {z is red, puce,
or ultramarine. If we denote by V(Pj) the number of alternatives P

3

may take on, then the number of Q-predicates we have, ., {s given by:

sl

« e 7 V(P’), (18)
j=1

Kaele 4 oiocs.
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where, as before, m 1is the number of predicates. Clearly the sub-

jective approach can handle any finite value of V(.).




MO e _

-87-

V. CONCEPT FORMATION AND INDUCTION

My purpouse in ‘h:s section is to provide an essentially Hayesian
mechanism for certair types of concept formation. It turns out that
this task is closely related to providing 2 subjectivistic generaliza-
tion of Hintikka's [26] two dimensional continuum of inductive methods,
and I shal! begin by briefly describing his work. Next I shall provide
a subjectivistic interpretation of it then show how all this relates to

concept formation.

Hintikka's Two Dimensional Continuum of Inductive Methods

Consider 12 predicate M (a disjunction of several Q-predicates) and
suppose that we have observed several thousand individuals that all of
them have instantiated M, and that there exists no M' with logical width
less than M such that all the observed individuals also instantiated M',
Having seen several thousand instances of M, and none of -M, we may very
well wish to assign a non-zero probability to the assertion that all of
the (infinite number of) individuals in this series exemplify M. This
cannot be done in the Carnapian system (unless M {s tautologous) or in
the subjectivisitc generalization of it that I outlined; that is, what

is known as inductive generalization is impossibie in these svstens.

Hintikka's [26] purpose is to generalize the Carnapian system in such
a vay that inductive generalization is possible,
Hintikka defines a "constituent”' in the following way: the con-

stituent C(i,j,k) is true if and only if

() & ( X)Qi(x) & (x)Q, (x) & (x)rQi(x)Wj(x)VQk(x)}
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is true. Referring back to equation (13), C(1,3) would mean that all
individuals have the property Pz, some have Pl' and some don't have Pl'
C(.) may have any number of arguments from 1 to +; let us denote by Cw
any constituent that asserts that exactly w Q-predicates are instantiated,
(;})is the number of different constituents there are with exactiy w

Q-predicates instantiated. The tctal number of constituents, N. is,

therefore, given by:

N = Z(;)-z‘ - 1. (19)

Assume that a total of ~ different Q-predicates have bean cbserved
in a sample, e, of size n. Consider a constituent C*, Following Hin-
tikka, we obtain by Bayes' theorem the posterior probability for C*
given e, under the assumption that the prior probability cf a constit-

uent depends only on the number of Q-predicates in it:

p(c* le) - J(C’E)Pie IC*) (20)

x=C+]
)3 (wCr) p(cple|C)

w= ]

where p(Cw) is the prior probability of a constituent containing w Q-
predicates. (Equation (20) corrects some typographical mistakes in
Hintikka's equation (2).)

Hintikka makes two assumptions to obtain the prior probabilities
p(Cw) and the likelihood p(e,Cw). As noted, unless w = r | p(Cw) = 0

in the Carnapian system with an infinite number of individuais. Hin-

~ tikka uses as p(Cw) the (non-zero) number that p(Cw) would be in a
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Carnapian universe with a individuals. Thus he obtains a family of
priors indexed by « runnming from 0 to =». To obtain p(e‘Cw) he makes
the same assumptions as in the Carnapian system except that he allows
only w iuntead of x Q-predicates. In this way Hintikka allows for the
possibil ity of iuductive generalization. A low « corresponds to a
prior expectation of a highly ordered universe in which tut few Q-
predicates are inscantiated; a high @ corresponds to a prior expecta-
tion that almost all the Q-predicates will be instantiated. Carnap's

system is the special case of Hintikka's obtained by letting a — =,

Subjectivistic Interpretation of Hintikka's System

From (19) we see that there are N = 2“ - 1 different const_tuents;

les us label them Cl""’cN letting CN be the constituent containing

all x Q-predicstes. To each Ci let us assign a w-variate Dirichlet
density where, as before, w is the number of Q-predicates Ci asserts
to exist. (A l-variate Dirichlet density is assumed to be an impulse
or § function.) The Dirichlet deansity corresponding to Ci’ which I

shall call Di’ is assumed to hold given that Cy is true, D, is a p.d.f.

i

for the probabilities 53 of the Q-predicates contained in C Let

i
E - (Cl,...,gN) be a vector that gives the prior probabilities of the

Cis, i.e., p(Ct) = Ci' We thus have third order probabilities--g1

corresponds to the probability that D, {s the correct . for the

i
probabilities gj. If CN = ] and, hence, all the other gis equal zero,
we have the subjective system outlined previously in this paper. If
all the Dis are equal for constituents containing the same number of

Q-predicates, if each D1 has all its parameters equal to one another,

if all the predicates are dichotomous, and if z is contained in a
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certain subset of EN’ then the system outlined here reduces to Hintikka's
two dimengional continuum. Development of mathematical detail must await

another time.

Concept Formation and Induction

in iectures at Stanford University, Professor Patrick Suppes
develcped what he calls the "template" representation of a concept.
This has been further developed in a recent paper by Roberts and Suppes
[53]. His lectures centered around the psychological problem of de-
scribing how people actually dc acquire concepts. A typical experimen-
tal paradigm would be something like the following: A subject {8 shown
geometrical figures that differ in size, form, and color. After he is
shown a figure he must say whether the figure belongs to class "A" or
whether it does not. After making his response, the subject is told
the correct answer, then shown & new figure.

Let us assume there are three sizes, three zolors, and three forms.
Each figure can then be described by a Q-predicate; by equation (18) the
total number of Q-predicates is 27. To the three natural predicates--
size, form, and color--we can add the predicate "is & member of class
'A'." Thus we have a new system with 54 Q-predicates, Suppose the con-
cept to be learned is 'is aquamarine or triangular"; exactly one of the
254-1 constituents exemplifies this concept. More specifically, that
constituent is (Ix)[R(x) & A(x)] & (Ax)[-R(x) & -A(x)] and (x){[R(X)
& A(x}] V[-R(x) & -A(x)]}, where R(x) i{s "x is aquamarine or triangular"
and A(x) 1s "x is in class 'A'.," An important question then is whethe:
or not the subjectivisitc generalization of Hintikka's system can pro-

vide an adequate empirical account of human concept formation. The

b S ety
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possibility of a low value for o (or its subjectivistic equivalent) makes
it conceivable that this approach could be adequate to account for the
extremely rapid concept learning that humans exhibit.

Let me now suggest a fairly specific two parameter model for human
concept formation. The assumptions of the model are:

Assumption 1. On trial n the subject's state may be represented

by a vector Sn = (s "’SN) where N (s the number of constituents in

1
the system and s, may be considered the subject's estimate of the prob-
ability that constituent C1 holds.

Assumption 2. With probability el, Sn+1 is computed from Sn and
the most recently observed figure by meaus of (20); with probability
L - ei’ Sn+1 = Sn'

Assumption 3. When on trial n, the subject is given & new figure
to respond to he computes from Sn the probability that the figure is in
clas. "A". [f this probability exceeds .5 he responds "A"; otherwise,
he responis "-A".

Assumption 4. All constituents containing an equal number of Q-
predicates have equal prior probabilities. The prior probability that
the true constituent will have j (1 s j ¢ x) Q-predicites is given by
(;:}) eg_l(l - Bz)t-j. (Large 92 implies rapid inductive generaliza-
tion or, in Hintikka's system, it corresponds to small a.) This as-
sumption determines Sl'
Given these four assumptions and estimated values of the parameters

9, and , the subject's responses can be predicted from the figures he
1 gu

has been shown and their clagsificativons. It should be clear, of course,

that the model just outlined is but one of mayy pussible similar models.
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I will close this section by posing two questions; (i) To what
extent can existing emplrical models of concept formation be shown to
be special cases (or generalizations) of the model I have described?
(ii) What, if anything, would estimated values of 62 tell us about

the true regularity of the universe we live in?




VI. CONCLUDING COMMENTS

I have attempted in this part to extend a subjectivistic theory
of induction in a way that allows the logical systems of Carnap and
Hintikka to appear as special cases. 1In the course cf this effort I
have attempted to provide a definition of information that is adequate
from a subjective point of view and have extended the subjectivist ap-
proach to account for certain types of concept formation. Yet there
is nothing in what I have said that would provide any fundamental justi-
fication for utilizing information from the past to make inferences
concerning the future.

I will conclude by suggesting that theorles of induction may be
lexicographically ordered according to how satisfactory they are. Along
the first dimension the criterion is "How well does the theory deal with

1

the problem posed by Hume?" All inductive syst ms are equally (and to-
tally) unsatisfactory from this point of view, Along the secondary
dimension the subjective theory is, though problems remain, probably

the best. But unsatisfactory is unsatisfactory: Hume's intellectual

successors are Sartre and Dylan,
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FOOTNOTES

1I realize that this is treating rather briefly a still ongoing debate
concerning the nature of probability. But entering into that discussion

here would take me too far afield.

ZTwo applications to psychology of the notion of information discussed
here should be mentioned; both relate to problems posed by David Hume
[31]. The first relates to Hume's distinction between simple and com-
plex impressions. Work reviewed by Miller [44] suggests a way of making
this distinction precise. Miller describes work that indicates that the
amount of information a human can process is strictly limiced and about
the same for different dimensions; combining dimensions provides means
for increasing the information input. Simple impressions might be de-
tined, then, as impressions involving only one perceptual dimension,

and complex ones defined as involving more than one. The problem here
is to construct an algebra for combining perceptual dimensions and one
approach to this (that resolves an apparent contradiction inthe ex-
perimental literature) is suggested in Jamison [33]. The second ap-
plication of the notfons of semantic {nformetion to psvcholovgica!
problems posed bv Hume {s to the problem of distinguishiag between memory
and imagination. Here we might say that something is imagined if the
amount of information concerning rhat something that a person can supply
is virtualiy un!imited. Otherwise, it is a memory. This definition
suffers from the defect. as Professor Suppes has pointed out to me, that
the more vivid a memory (s, the more difffcult will it be to separate (t

from imagination.
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3Usually we can characterize the uncertainty in a decision situation as
the sum of H(E(EZ)) and H(f). If, however, f itself is not precisely
known, the uncertainty associated with alternative possible fs must be

added in, and so on.

aAn important practical problem for the theory of subjective probability
is the problem of measuring subjective probabilities. Suppes [67] sug-
gests that a problem with the method of using wagers {s that persons
will change the odds at which they will bet as the size of their bet
increases. A solution to this problem is to fix the size of the per-

son's bet, let him choose the odds, and have the experimenter choose

[} t

the side of the bet the subject must take (the "you divide, I choose'
principle). If the situation is such that thc subject be!ieves that
the experimenter knows more about the odds than he does, the subject

will be strongly motivated to give an accurate probability assessment

regardless of the amount ho has at stake.

SRonald Howard [29] utillzes what are essentially probability distri-
butionr over probability distributions by considering a probabiifty

density function for tiw parameters of another probability density

function. The notlion of probabilities of probablilties is regularly

usced {n applied Bayes{an work.

6Profcssor Suppes points out to me that, though there is a r.ch body
of results in meta-mathematics, mathematicians apparently feel no need
to derive formal results concerning meta-mathematics in a meta-meta-
mathematics, I might add, however, concerning the probable crror ex-

amplc . that scverai vears ago when I was helping design an experiment
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to measure the astronomical unit, I found the notion of probable error

in probable error rather useful.

7Laplace's law of succession is dervied from Bayes' theorem and the
assumption of a uniform prior for g If the uniform prior is changed

to any of the possibilities given in equation (8), the following gen-
eralization of the law of succession can be derived: pr»l(wi) = (n+l)/
(r+m) , where pr+1(ui) is the {expectation of) the probability that on

the r + lst trial y will occur, n is the number of times is has oc-
curred in the previous r trials., and m is the number of states of nature,.
Since completing a draft of this paper . Raimo Toumela has pointed out

to me that Good [25) has discussed notions that are formally analogous

to f(E). Good mentions that :this generalized version of the law of

succession was known to Lidstone in 1925,

SThis assertion must be slightly quaiified; the Dirichlet densfty is
undefined for v, = 0. Hence, though the inductive method characterized
by A = O may be approached with arbitrary closeness, it cannot be at-
tained in the subjective system. This point is of some importance,
since ) = U is the inductive system implicit in the 'maximum likeli-
hood' vestimation principle that is rather videly used, at least in

psychology.
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Part Three/Two
LEARNTING AND THE STRUCTURE OF INFORMATION

I. PAIREDN-ASSOCIATE LEARNING

1. Paired-Associate Learning with Complete Information

In the experimental paradigm for the theories discussed in this
section, the experimenter presents the subject with stimuli in random
order. Each stimulus i{s paired®to cxactly one of N response alter-
natives. After seeing a stimulus, the subject chooses the response
he believes is correct. After the su' .t has made a choice, the
experimenter tells him what the correct response was. The subject
then proceeds to the next stimulus. This correction procedure is

distinguished from ngncorrectiou procedures in which the subject is

told only whether ne was correct or incorrect. Noncorrection proce-
dures are diacussed briefly in Part II, Section 2 with other theories
of incomplete information., Certain ol our propused models for the
correction procedure bear mild resemblance to models for the non-

correcticn procedure presented by Millward [45] and Nabinsky [47].

The objective »f a theory of PAL (paired-associate learning) is
to predict the detalled statistical structure of subjects' response
deta in the type of cxperimental paradigm just described. Theorics
of PAL have the followinpg gencral structure. Por ecach of the (home-
genecous) stimulus items there cxists a set T of statos that the subjest
may be in on any tricl and & set © of response alternatives that he
na choose from. There further cxists 2 set 2 of reinforcing cverts.
Pinally, there exist tw functivas: « function f thet maps I x X into
J0,i1] and a function g that maps T X @ » T into (L,']. (Here T xR

denotes the cross product of the sets I and R.) The function f gives

the probabilities of the various responses for each state; the function
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g gives the probabilities of state transitions for various reinforce-
ments. In this way, a model of PAL may be considered an ordered
quintuple, (i@, R, I f, g;>. A particular theory specifies pre-
cisely the members of the three sets and the form of the two func-
ticas.

The remainder of this section is divided into two parts. In the
first part we give a brief review of eight existing theories of PAL,
In the second part we present several new theories. For each new
theory we present informally its assumptions, its basic mathematical
structure, a few derivations, and its relaticons to other theories.

Fxisting theories of paired-associate learning

The linear model. Let p(en) denote the probability of an error
occurring on trial n. The basic assumption of the linear model is

that p(enJl) is a fixed fraction of p(en), specifically:

W Ple ) = 9 ple)

n+l

If we make the natural assumption that p(el) be equal to (N-1)}/N, then

N n-1

==

=|
0

(2) ple) =

Bush and Mosteller [14] described the linear model in some detail.

The one-element model. The principal assumption of the one-element
model is that for each stimulus element the subject is in one of two
states--conditioned to the correct response or not conditioned to it.
I{ he is not conditioned, then with probability ¢ on any trial he be-

comes conditioned; once he becomes conditioned, he remains so. If the
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subject is conditioned, he responds correctly; if he is not, hLe guesses,
responding correctly with prebability 1/N. The following transition
matrix and error response probability vector summarize the one-clement

model, where C and C represent the condi:ioned and unconditioned states:

c ] ;
c | 0 0
(3) - N-1 |
C c i~ ! -——-}
: | N
N J

This matrix gives the probabilities of transition from one state
to the next on each trial; the vector gives the probability of making
an incorrect response in each state. The probability of error on trial

n is easily shown to be given by:

N-l 0ol
@ ple)) = 5 (1-0)

Bower [12] compared the linear and one-element models on a wide

*
varietv of statistics for experiments with N=2, The one-element model
fits much better than the linear model. But when N > 2, the one-element

model performs less well. although still better than the linear model.

Ihe two-phase model. Norman [4Y] proposed a two-phase model for
which he agsumes that no learning occurs up to some trisl k; after
trial k, iearning proceeds linearly with parameter 6. The trial of
first learning, k, is geometrically distributed with parameter c. The
probability of errur on trial n is given by:

‘ (N-1)/N for n S k

N-l . 0ok

(5) pe) =
l N (1-0) for n > k

*Clearly we cannot distinguish between the linear and one element
models by equations 2 and 4 as taey are essentially the same; the models
predict very diffeient dependencies within the data, however.
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When 9 = 1, ihe equation reducas to the one-element model; when ¢ =1,
the equation reduces to the linear model.

The random-trial incremental model. In Normen [48], the RTI

(random-trial incremental) model postulated that on each trial learn-
ing cccurs with probability c; if it does otvcur, it does 8o linearly
with learning parameter ;. The fcllowing equation summarizes the
model :

‘ (1-:)p(sn} wi.th probability ¢
6) ple_.)) =
‘ ! p(e_) with probability 1 - c.

As with the two-phase model, if 8 = 1, the RTI model raduces to the

onc-element model and if ¢ = 1, il reduces to the linear model.

The two-element model. Both the two-phase and the RTI models

——

primarily represent extensions of the linear wodel; Suppes and Gins-
berg [69] suggested an extension of the one-element model to a
two-element model. The subject is in any one of three statcs--Co,

C., and Cz; the subscript refers to the number of stimulus elements

1!
conditioned to the correct response. Those not conditioned to the

correct response are unconditioned. The transition matrix and error

probability vector given below surmarize the model:

2 1 0
C2 1 0 0 0
(7) C1 b 1~b 0 1-g
CO 0 a 1-a N-1
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The model has three parameters: the conditioning probabilities a
end b and the guessing probability g for when the subject is in

state Cl' Predicting a stationary probability of success prior to

IR 1

last error is one of the major shortcomings of the one-element model;

T X

the two-2lement model avoids this shortcoming.

The long-short model. In their comprehensive overview of paired- £
associate learning models, Atkinson and Crothers [7] proposed a
model based on the distinction between long- and short-term stores.
In state L the subject has the S~R association in long-term store
and remembers it. In state S the subject alwavs responds correctly,

but may forget the association and drop back to a guessing state F.

State F is initially reached by ‘'coding' the stimulus element from

an uncoded state U; this coding occurs with probability c¢. “he other

parameters of the model axe the probability a that when reinforcement
1 occurs the subject goes into state L, and the probability f that an

item in state S will move back to F. The transition matrix and

error probability vector of the model are given below:

‘ L S F U
. - ] [ o | " S
| L 1 0 0 0 0 B

S a (1-a) (1-f) (l-a)f 0 0

®) N-1
F a (1-a) (1-£) (l-a)f 0 N f
U ca c(l-a)(1-£) c(l-a)f 1l-c N-1
— L N —

The three-parameter version cf this model is referred to as LS-3;
" a two-parameter version, LS-2, is obtained by setting ¢ = 1. '

Atkinson and Crothers point out that this model was constructed with




-102-

an emphasis on reproducing specific psychological processes, though
the reason the transition from S te S should have the same proba-
bility as the one from F to S remains unclear. Both the LS-3 and
LS-2 models fit the data very well. Extensions of the LS-3 model
and a trial-dependent fco.getting (TDF) model to account for vari-
ations in list length are presented in the Atkinson and Crothers
paper and extended bv Calfee and Atkinson [15]. Rumelhart [54]
presented an illuminating overview and e¢xtensions of these models.
However, we will discuss these variations no further.

A forgetting model. Bernbach [11] proposed a three-parameter
forgetting model for paired-associate learning. In state C the sub-
ject is always correct, and in state G he is correct with probability
1/N. Immediately after reinforcement the subject is in state C; pre-
sumably if he were immediately tested he would always be correct, but
before the next presentation of the stimulus there is a probability §
that he will forget. If the subject is in state C with probabilitv 4,
he permanently acquires the S-R association and moves to state C'.
Finally, there is a probability 8 that if the subject guesses in-
correctly, he learns the incorrect response he guessed. If so, he
goes to state E in which his probability of success is zero. The
forgetting model is represented by the following transition matrix

and error probability vector:
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c' c G E
c' 1 0 0 0 7 po—ﬂ
%) ¢ 0 (1-6) (1-5) (1-0)6 0 0
G 0 [l-s(N—;il-)](l-s) 5 8 -;}l) (1-8){ [1-1/N
E 0 (1-8) (1-8) 5 3(1-5) 1|
o Jd L

Bernbach performed some experiments in which the forgetting model
does rather betier than the one-element model.

This completes our discussion of a number of existing models for
paired-associate learning. Wc now turn to some new models.

New theories of paired-associate learning

The Dirichlet model. The name ‘Dirichlet" is applied to this
model since the generalization developed in Part II, Section Z uses
the general Dirichlet density. 7The model we shall now consider uses
the one-dimensional version of the Dirichlet family known as the

beta density. The intuitive idea of the model is that the subject

can be in any state indexed by numbers on the interval [0,1]. If

the subject is in state r{0 < r < 1) on trial n, he responds correctly

with probability r, and his state on trial ntl is drawn from a beta

density on the interval [r,1]. Figure 1 illustrates this.

Let us state the assumptions more explicitly:
1. The state the subject is in on trial n is indexed by a real
number r such that 0 s ¢ < 1.
n n
2. If the subject is in state o he responds correctly with

probability v
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fn+|

Fig.1—The density for r .,
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3. Let f(rm_lltn) be the density for T4 Siven r . Then

0 if r1 < r, or if rn+1 > 1, and
(10) r(rmllrn) = C et 8-1
1 . o+l n . 1 - rn+1-rn
B(a.ﬂ)(l-rn) l-tn T
if l'nil’n+1_<|.J>0. and . > 0.

The function B(e,B) is the beta function of o and B and is defined

1
to equal f a-1 B-1
0 X (1-x) dx.

4, On the first trial r, = 1/N, where il is the number of response

alternatives.

Theorem 1. The learning curve £g_x:_ the Dirichlet model is given
: Nl o, ol
by: l:’(en) N (MB) *

Proot: Denote the expected value of fo4 Biven r by E(rmllrn)'

It is an elementar: property ot betd densities that the density

- xm'l(l-x)a‘1 for 0 <'x < 1 has expectation a/o+8. Hence,
B(x,B8) - =

= 2 -
(11) E(rmllrn) gy (o)

Now T is itgelf a random variable. The expected value of r ol given

L is a linear fuaction uf rn. But the expected value of a linear
function of 8 random variable is simply equal to that same linear
function of the expected value of the random variable, i.e.,

(12) E(ro ) = EGr ) + o [i-E(r)].
o+B
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Thus from rl we can find the expected value of r,; from the expected

value of r, we find the expected value of r . etc. It follows that

2 3
(13) E(l-xr_ ) ,l -2 EG ) = L EQ1-r ) .
n+l \ a+B | n a+f n
\
Since 1 - r, = Eéi, by recursion on (13) it follows that E(l-rn) =

Eél [B/(a*e)]n-l. But p(en) is simply equal to E(l-rn); hence,

n-1
N-1 a
= = . .E.D.
(14) p(en) N a+: Q D

=] - £ represents the learning rate in this
atl ot P &

model: the learning curve generated is the same as for the linear and

The quantity

one-element models. In fact, both the linear aund one-element models

are special cases of the Dirichlet. The linear model results from

[
setting § = ;:E and allowiny @ and . to appreoach infinity.

a
The one-element model results fron setting ¢ = —% and letting a

and 2 approach zerc. The behavior of f(rn+l) for various values of a is

.

shown in Figure 2, where - = .25 and r.o= 2.

We assume that the subject fails to learn on cach trial with some
fixed probability, l-r, but when he does learn, Tl is given b (10),
which results in a three-paramcter generalization of the Dirichlet
model. Letting r = 1 gives the two-parameter Dirfchlet. If r = ¢ ¢ 1
and ;35 = n, letting ~ approach infinity pives Norman's RTI model as a
spuLadl Ldst vl Lue tarce-parameter Uiraciniet medel. Gne thrce-parancter

*
Dirichlet model is an example of what Howard «calls a "Markovian

dynamic inference' model, with a continucus-state Markcv chain.

Hntnrd, R. ﬂ.‘ S"Stﬁms Apdlvs{s Of Markovw Prﬁvnggnq‘ toy annear.,
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Functions graphed schematically

a=25

a - .02

fn.l

Fig.2—f(r, ., |r. =.2) for —=— «_ 25

a+f
and several values of a
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The elimination model. The basic assumption of ihis model is that

the subject learns by elimiun tiug ~esponses known to be incorrect. He
eliminates each response possible on a given trial with a fixed proba-
bility, ¢, independently of whether he climinates other incorrect
responses. More explicitl:, the dssunptions of the modo! are:

1. If there are i respouse alteraat ives, the subject can be in
any of N states labeled from U te N*, where N* {s the number
of wrong responses (N* = N - 1). If the subject is in state i
(O -. i . N*), he has { possible wrong responses left to eliminate.

2. If the subject is in state i, the probability that he will
make a corrcct response is 1/i+1.

3. 1f the subtject enters a trial in state i, after being rein-
forced he eliminates each of the i remaining incorrect responscs with
probability ¢, independently of the others.

4. Entering trial 1, the subject is ‘n state Nk,

? few definitions are uscful before deriving the learning curve.

[y

0 1) i o .
The vector § = (s( ), s( T, s( ), ..., s ) )) i* the row vector
n n n n n

that gives the probability of being in state { on trial n. Tihe tran-

sition matrix T = "t and response probability vector E = "¢ " are
it :

defined as follows.
. - . ) . .
(15) r . ‘ (:) [ j(l'c)] , for 0 -1 5 - i

11 '
¢ . otherwise

For N = &, T and I are as follows:
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0 1 2 3
0 ~—1 0 0 0 - 0_1
(16) T = 1 € 1-¢ 0 0 1/2
2 & 20-0) (-l o | F° i 23
S P Pre B S P T S R B E/f»
L _] .

* . .
Theorem 2. The learning curve for the elimination model is

. —— o e e D i e, e

given by

_1 N
L- [ - a-"')
N(l-c)n~1

p(en) -1 -

Proof: First, it is evident that p(ep) = SPE, where Sn is the
state probability vector on trial n, given b~ sq = SIT“ . Sl is

simply equal to (0, 0, ..., 0, 1). To proceed we must provec that
. i-i
" = [tf?)7 is given by tg?) - (x) "1 - (1~e)n] (1-5)nJ if )<,
(r) '

1]

and t = 0 otherwise. The proof is inductive. Clearly the asser-

tion is true for n = 1, where n 1s the power of the matri~. Lot us

f~=1)

assume that {t {s true for k = n - l: that {s, assume Li ‘

(f) \"{(1-‘,’)1_‘I for i « j with v = (I-g)n‘l. Henceforth it is under-
3

. . . . . n-1 ~
steod that for j > 1, (ij cquals zere. Then, multiplving T bv T
. \ . n v-l no. (),
we obtain the genecral ewpression for T @ T T=T = e where:
Ly
1

Q i i -k i [ }
(17) ) A TG T ke
=0

Since (;) (E) - (f) (;:f)‘ and siace The limits of the sum aav be

changed to - and 1 because the matrix 1s trianguigr,

*
This proof was worked out with the help of Miss Deboarah Lhamen,
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An)
(18) lij

We now change the

i - j. Therefore

(n)
(19) tij
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i

2O 0t gt

)

k=]
index of sumwrstion to a = k-j and let d represent

d
O vaar Y & av? g
a=0

() vV -y + el

() L= 1 - ya-o1'

<§> 1-oM [1 - q-go"t

This completes the subsidiary proof that t(?) is given by

(20)

i

n-1-j

‘(*) 1 - (1-e)™ O-9™ if gy gt
GV B

ij
lO, otherwise.

i

Multiplying S1 by Tn-l gives Sn = 3 'I'n.-l where

1 ]

ey s - (M- a0 g 0D

Multiplyving this vrow vecter by the columu vector FE, we obtain:

Cied

(22) ple) =S FE = EE: i/ (?*) SE TR LS NN G Y

3=0

which can be transformed to:

3
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Re (e - j (a-1)j
23 ple) Z( n- ety 0
=0\ j
N*+1 N*+] K%+ 1k (n-1)k
- 1 [1 - (1_6)(0’1)] (1-¢)

=1 -0 e\ K

N4

B (R ¢ Ml |
(1-e)™ 1 (nre1)

Q.E.D.

The learning curve is the only statistic we shall derive for the
elinination model. Before going on to extensions of this model, we
should point cut the following: First, when N=2, the elimination medel
is formally identical to the one-element model, and, second, when N>2,
the model predicts increasing probability of success prior to the trial
of last errcr. This model is compared against data presented by Atkin-
son and Crothers in Table 1.

The acguisition/elimination mouels. These models are two- and

three-parameter generalizations of the elimination model. Tae basic
notion behind the two-parameter acquisition/elimination model (AE-2)

is that there is some probability c¢ that the subject learns the correct
response on any particular trial. If he fails to do so, he eliminates
incorrect responses with probability ¢ as in the elimination model.
More explicitly, AE-2 makes the same assumptions as the elimination

model except that Assumption 3 is changed to:
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TABLE 1

2
Minirum ¥X_ Values for Four Onec-Parameter Models®

Experiment One-Element* Linear* Elimination | Conditioning Strength
1a® 30.30 50.92 15.03 8.11
° 39.31 95 .86 17 .63 14 .41

11’ 62.13 251.55 32.71 31.80
111° 150 .66 296 .30 101.11 95.26
v’ 44 48 146 .95 31.76 39.37
va® 102.02 201.98 56.52 53.74
P 246 .96 236.15 97 .50 85 .69
ve? 161.03 262.56 117.76 90.26
Total Ai6.89 . 15a2.02 47002 | 418 .64
| |

a
Three-response alternatives.
b

Four-response alternatives.

CTotaL XZ for other models: 2-parameter: RTI, 284.139; 2-phase
493.59; LS-2, 147.16; 3-parameter: LS-3, 137.26; 2-element,
259.56.

*
Data from Atkinson and Crothers {7]. )
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3'. If the subject is in any state i, then after he is reinforced
e acquires the correct response with probability c¢. If he fails to
acquire the correct response then, with probability ¢, he eliminates
cach of the i remaining incorrect responses, independently of others.

The follewing transition matrix, T' = [tij] characterizes AE-2:
i . .
c 4 (l-¢) (e} , for j =0

(2) o= ) e e (1-5)?, ror 1 s s

0, otherwise

For N=4, the matrix is:

) 1 2 3
0 1 0 0 0
1 c+(1-¢)e (1-¢) (1-¢) 0 0
(25) T' = ) 2
2| et(l-e)e 2{1-c)(e) (1-¢)  (1-¢)(1-¢) 0
3 i c+(1—c)€3 3(1'C)e2(1”e) 3(1‘C)€(1‘e)2 (1-C)(1-6)?J

Model AE-2 reduces to the elimination model if ¢=0; it reduces to the one-
element model if ¢=0 or N=2. It can be extended tc three parameters (AE-3)
by assuming that when the subject learns an association (with probability c)
he may pick up several more than just the correct one. The number he ac-
quires is binomially distributed with parameters ¢ and i, i being his

state index. For example, if the subject is in state i and it is given

that he learns on a particular trial, then with probability Qi he acquires

just the correct response. Intunitively, 4 should he close to ane. The
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assumptions of AE-3 are the same as those of the elimination model and
AE-2 except that we substitute 3" for 3':

3", 1f the subject is in state i at the beginning of a trial
then, when reinforced, with probability c¢ he acquires the correct re-
sponse and up to i incorrect responses. He selects the number acquired
with a binomial distribution with parameters ¢ and i. With probability
i-c the subject acquires nothing, but he eliminates incorrect responses
independently, each with probability .

The transition matiix for AE-3, T" = [t;j], is given in component

form by
e o () (o) ) (@77 (1)) for0s g st g

otherwise .

(26) ¢, =
ij l 0,

1f o=1, AE-3 reduces to AE-2; if c¢=0 or c=1, AE-3 reduces to the
simple elimination model. The chief motivation for the AE-3 model is
that it can give a bimodal transition distribution, which the binomial
distribution in AE-2 cannot do.

An elimination model with forgetting. In the incorrect-response

elimination models discussed so far, there has been no provision for
regressing to a state in which the subject responds from pore wrong
responses, that is, for forgetting. It is plausible to assume that
during the intertrial interval, after the subject has eliminated per-
haps several incorrect responses, he might forget which ones he had
eliminated, thus introducing some more wrong responses. The basic
assumption of this forgetting model is that the responses learned

previously to be incorrect are reintroduced, independently of one
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another, with some probability &§. More explicitly, the assunmptions
are:

1. If there are N response alternatives, the subject can be
in any of N states iabeled from 0 to N%, where N% = N-1. If the
subject i{s in state 1(0 < { < N*), he has 1 possible wrong responses
left to eliminate.

2. If the subject is in state i, the probability that he will
make a correct respense is 1/i-1.

3. If the subject enters a trial in state i, after being re-
inforced he eliminates each of the i remaining incorrect responses
with probability ¢, independently of the others.

4. Unless the subject is in state 0, between trials he forgets
cach response previously learned to be incorrect with probability §,
independently of the others. If the subject is in state 0, he stays
there.

5. When the subject enters trial 1, he is in state N¥%,

The subject enters trial 1 with state probability vector Sl =

(0,0, ..., 0, ..., 1) by Assumption 5. Shortly after reinforcement,

the subjecct has state probability vector S1

given by:

! =
(27) s, = 8,1,

where T is the transition matrix giver by (15). During the intertrial

interval the subject may forget; his forgetting or reintroduction is
L]
1

represented by a matrix F that operates on S1

F = [fij] is given by:
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(oo =1
= - e .2 N%*
} ij 0 forl -3 4N
(25) £, =0 for j < i
P H N¥ -] ok
3 = e i—l - A .’j i « 37 « N¥*
\ fij (j-i ) o (1-%) for 0 « i 5 j « N*,
For N=4, F is:
0 1 2 3
s —
0 1 0 0 0
2 2
(29) F= 110 (1-9) 25(1-5) 5
2 0 0 (1-¢) £
3 0 0 0 )
L. -
Thus S2 = SiF = SlTF. Or, morc gencrally,
n-1
(30} S = Sl(TF) ,
and
(31) plo) = Sl(’rr)”’lg -

Clearlyv this forgetting model could be ceneralized by replacing

T with T' (24) or b T (26).

A conditioning strenpth model. Atkinson [6] suggested a
generalization of stimulus-sampling theoryv that embodies the notion
of 'conditizrning strength'. Fac'. sespouse alternative has associated
with it a ccaditioning strengthy tiwe total available amonnt of con-
ditioning strenstl remains constaat over trials. The probabiliiv that

anv civen vosponse will be made is its conditioning strevctl drvided
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by the total available. Our model specializes Atkinson's work to
paired-associate learning and generalizes it to include richer ways
of redistributing conditicaing strength after reinforcement. The
assumptions of our model are:

1. 1If there are N response alternatives, the subiect can be in
any of N states. If the subject is in state i, (0<i<N-1), the con-
ditioning streryt’. ol the cortcct response is N-i. The total available
conditioniayg .trength is N,

2. The 7 obability of a correct response is equal to the response
strength of the correct response divided by total response strength.
That is to say, if the subject is in state i, his probability of being
correct is Eii, and the prebability of being incorrect is % .

3. If the subject is in state i on trial n, on trial ntl he can
be in any state between i and 0; which state he enters is given by
a binomial distribution with parameters i and .

4. On trial 1, i = N-1.

The transition matrix of this model is identical to that of the
elimination model; all that differs is the response probability vector.

The matrix and response probability vector arce shown below.

0 1 2 3 N-1
— 1 - A
0 |1 0 0 0 ...o0 /N
1| (1-a) 0 0o . ..0 1/N
gl
G2y 1 = 2 (@ 2a(1-w) -0 o . ..ol B =|o2m
2 2 .
3 (»:,)3 3o (1=2) 3a(1l-c) (1-1)3. .. 0
N-1 N- N-1
N-1 (@) C NTESh LV .
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The learning curve is siven by:
(n-1)
(33) p(en) = Sl T* EX

'I‘k(n-l) (n-l)

is given by (20) and S1 Tk by (21) where N* must be re-

placed by N-1. Multiplving SlT*(n-l) by E¥, we obtain
N-1

. 4 N-1-j cp
) ple) =2) i/ (“jl) Q- (1)) 7D
J=

Ignoring N in the denominator, what roma‘as is the expression for the
. . -1
expectation of a binomial density with , irameters N-1 and (1-a)n .

As this expectation is (N-l)(l'c.x')n-1 ,

(35) pie) =Bl a-™t

which is the same learning curve as that for the linear and one-element
models.

Clearly two- and thrce-parameter generalizations of the condit:oning
strength model are obtained by using the matrices given in (24) and (26)

instead of T,

Comparison of the one-parameter eiimination and conditioning strength

models. Atkinson and Crothers [7] presented results from eight PAL
experiments, in which three have three response alternatives and five
have four response alternatives. Parameters are estimated by a minimum
x2 technique from the 16 possible sequences in the data of correct and
incorrect responses on trials 2 to 5. Atkinson and Cirothers give results
for many models; their results for the lincar and »ne-element models are

shown in Table | (mee p. 16). Also shown in Tabie | are the .esults we
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obtained for the one-parameter climination and conditioning strength
nodels. Table 2 shows the parameter estimates. OQOur theoretical pre-

dictions were obtained by computer simulation.

s it e T




TABLE 2

Parametcer Estimates for Four One-Parameter Models

T T It -
TOne-Elemenc* . Linear Elimindation Conditioning Strength
Experiment R " A N o
Y S —
{a 583 R .50 .55
Ib .328 .328 .56 .60
II A L2 ) .09
I1I .203 .253 .61 .70
v .281 297 .52 .66
Va .125 164 .74 .84
Vb 172 .250 .62 .70
Ve . 289 330 52 .66

*
Dats rrom Atkiusvn ond Grothers [7].
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2. Paired-Associate Learning with Incompiete Information: Noncon-

tingent Case

The gereral structure considered in this subsection {s palred-
asgociate learning with multiresponse reinforcement. We deal here with
noncontingent reinforcement, and then, in the next subsection, we deal
very briefly with reinforcement contingent on the subject's response,
On each trial the gubject responds with one of N alternatives. He is
then reinforced with a subset of these N alternatives congistirg of the
orne correct response and D distractors, of cardinality A {n all (where
A = D+1)., If A 1s one, then the paradigm is exac®ly that of determinate
reinforcement just consiieread. If A i{s greater than one, then on anv
single trial the subject cannot rationally determine the correct re-
sponse. On each trial the cerrect response is reinforced. The D dis-
tractors are selected randomly on each trial from the N* possible wrong
responses. Thus over trials the correct response will be the one re-
sponse which {s alwvays reinforced. The subject's task {s to make as
many correct responses as he can and to learn the correct response as
quickly as he can.

Normative model. (iven the ihove paradigm, ior some of the ex-

tensions, it is necessary to make predict.ons about the optimal be-

havior of s subject with perfect memory. Perfect memory of the entire
reinforcement history is not required for normative behavior. If o..
each trial the reinforcement sets sre intersected, then only the re-
sulting intersection needs to be rem~mbered. Thus {f on trial 1 the
subject is told that the correct response s among -, b, c, #nd d,

where A 18 4, and on trisl 2 that the correct response is among s, b,

¢. and e, he need onlv rememher a, b, and ¢, the aemhers of the {n-

rerae Lion ar e heging trid 1. He then Intersects this et with




tie ne o l2inforcement s-t.  Successive reinforiements and (1 erse: -

tions even-ually wii. .ead tc iLne correct rvesponse. The task now is

o describe t.e 'even uaiiy',
Let N states 0. 1,... N* be defined a¢ for the eliminaticn models

in Part (I, Section 1. Thus state i is the state of having i wrong

responses, plus the correct one, that remain in the intersectien on a
given trial immediately before making a :sponse. The subject responds
frowm this set of i+]1 responses, and then is shown A reinforcers. Since
the subject 1s assumed to be acting normatively he {ntersects the new
reinforcement set with the old intersection and remembers the resulting
intersection until the next trfal. The number of wrong responses now
in memory is the cardinality of the intersection minus 1, and this is
the number of the state in which the subject enters the next trial.
Obvicusly j, the index of this new atate, cannot be greater than i,

which after the firat reinforcement cannot be greater than D.

Letting NN = Lnnij] be the transition matrix for the normative
model, the general expression follows immedi~*ely by considering the
transition from state { to j as the event of exactly j cut of the D
reinforced distractors being among the { distractors in the previous
intersection.

Thus we obtain

‘ o, D301y

P
(36) nnij = (N )D

for C < J « 1 <« N*and j ¢ D

0, otherwise

where (u)b - (;) > bt = a(a-1) * * -+ (a-b+l).




The ncrmwative transition matrix and error vector for A=2 are given as

an - xample.

v ! 2 « N»
-—0 . g r -
1 0 0 ... 0 0
i Nx-1 1 0...0 1
FE . N* §
37 = " * . . .
U EEE R T RTINS ]
dr-l 1
1 A
N e O e O T
LF* 0 1 0 qJ N*
LN

if Sn is the state probablility vector as before, and the subject again
enters trial 1 in state N*, by virtue of intersecting the reinforce-
ment subset with the entire set, the subject must enter trial 2 in

state D. Thus

O

0 , otherwise ,

This equation alsc can be obtained directly from the trangition matrix
in (37).

Although states A through N* are irrelevant except for entering
state N* on the first trial, they will be needed later, and thus for
convenience sre introduced here.

The equation for the state vector ie given below:

n-1
(39) Sn SlNN .

Letting Sn - [S;, S;] with the partition after column D, and letting

)
NN = [::" 8], with the partition after column and row D, we obtain
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We now derive the ncrmative learning curve. As before, tne prob-

ability of arn error on trial n is found by multiplying Sn and E; thus
* - =» ‘P‘ . :
(41) P¥(e ) S,E f&ﬁ nn D, 7.

The powers of the NN matrix for A = Z givea La (37) are reacily
found, and an explicit solution to the learni~; curve is possible. The

power of the matrix with the extra states eliminated is given below.
0
1

0 0

(42) ()" -
n

1. 1
s A o

Thus the learning curve &nd total errors are cobtained:

‘.gf , n=l
(43) P(en) = ) 1.1 n-2
(.ieﬁw) , N=2,3,..,,
N*(3N*-1)
(44)  E(total errors) = 2 PCey) = an(yae1)

n=]

This analytic solution for A=2 is given only as an example; numer-
ical solutions for several specific N,A pairings are included in Part
Four/Two. They are used there to compare real subject performance with
the normative model.

At this point extensions of some models which do not reduce to the
normative one are discussed. The normative model will be used later in

extensions of other mode.s.




One-clement model. Several extensions of the one-element model

-

outlined in Par= II, Section 1 are possible and are considered here.
An alternative generalization is discussed later as a special case of
another model, The assumptions of this version of the one-element
model are:

1. On each trial, the subject is either unconditioned or condi-
ticned to exactly one of the N response alternatives. The unconditioned
state will be denoted C; the state of being conditioned to the correct
response will be denoted C; and the state of being conditioned to any
of the N* incorrect responses will be denoted W.

2. If the subject is in state C, he mskes each response with a
guessing probability, 1/N. Otherwise he makes the response to which
he is conditioned.

3. On any given trial, with probability l-c, the reinforcement
13 ineffective and the state of conditioning 1s unchanged. With prob-
ability ¢ the reinforcement is effective. With effective reinforce~
ment, 1f the subject is in state E, he conditions with equal likelihood
to any one, but exactly one, of the A reinforce.s. If he is in a con-
ditioned state and the response to which he 1s conditioned appears in
the reinforcement set, he remains conditioned to that respcnse. If the
regponse does not appear, and if the reinforcement 15 effective, he
rejects the response *o which he was conditioned and becomes conditioned
to exactly one of the responses reinforced on that trial.

4. Entering trial one, the subject is in state C. Thus for the

one-element model the transition matrix and error vector are:




Py

L

B )
)

- e~

¢ 1 0 0 0 |
N&-D c(N*-D)
'3 . - ol -

(‘0-) w c.——-N*A 1 *—'NI_—A 0 , E 1
- 1 D N#*
C n Y l-¢ 'R
= ] -

By raising the transition matrix to the (n-1)st power, the
learning curve and expectaticn for total errors are found to be as
follows:

. -1
N® c \N*-D)n
(46) P(en) “ 1 T . and

N®
(47) E(total errors) =

AN®

“c(N*-D)

No other statistics will be derived. The moat obvious test, however,
is not the learning cnrvae ftaalf, hat the prediction of the run of
errors while the subject is in state W. Once the subject moves out of
state E, no successes are predicted until he learns.

It sho»ld be noted that the one~element model does not reduce to
the normative model for any value of ¢. As ¢ incresses, the probability
of conditioning wrongly increases at the same rate as the probability
of conditioning correctly.

An interssting extension of the one-elament model has been worked
out for A that varies in size on each trial fror 1 to N, with proba-
bility " that A = a, The basic assumptions of the model are the same,
but the state transition probabilities are altered by the experimental

change, Let




s bt

(4R) B= (W ,iW).

Then, if the learning curve is analogous to that with conetent A, w

1]

should expect

N¢ n-1
(49) qn ® % B .

We now prove this. Let M = p(wn+l]cn). So P(Cn+llcn) remaing l-c.

Then by raising the trausition matrix to the (n-1l)st power, and as-

suming the subject starts in state C,

(0 B - um-cl‘l‘:i_; 314
But, since
(51) B i: 0 (-SE)) -1 ?:*:‘ -,
maid
(52) M= ]f;u. c(1-3) = c[l-lg;-;l].
a= =

n-1

3 po) = Ea-o™t - ",

Thus,

N-1 N-1, o=l _ N-1 jo-1
(54) qn - P(wn) +"-N- P(Cn) - P(wn) +T(1‘C) -TP .

Linear models. Let P, " (p1 o’ pZ,n' ceuy pN.n) represent the
]

response probability vector on trial n. That is, P{n is the proba-
»
bility of making the lth response on trial n. N is the number of re-

sponse alternatives. A linear modsl for learning asserts that Pn+1

" 3
2
A N




-

g

is a linear func.ion of Py the eract nature of that llnear function
depends on the reinforcement. Consider as an example a situation with

the two response alternatives, a, and 28, where a, is always correct,

1

The linear model for this situation is represented by a transformation

1

l-a a - -
matrix, L [lij] [;_e 9]’ The vector Yol is given by the {ollow

ing expression:

55)  (p b )= (py s, ) |FT O
l,0+l’ "2,n+1 1,n* *2,n" |1~¢ QJ.

The elements of the matrix L clearly must be independent of P, °of
the model would be nonlinear. For learning .o occur, 8 must be greater
than a.

In th. example above only one reinforcement is given (i.e., this
is the situation considered in Part II, Section 1), hence, only one
trac=itinn merriv, Tn general the trane!+fon matrix muast be indexed
by the reinforcement E. The class of £ll linear models corresponds to

the class of all transition matrices L(E) = {t,,(E)] such that:

13

(56) (E) > 0 for 1 < 1,J <N

lij

and

(57) z; lij(E)-l for 1 <1 <N,

where E is a particular reinf. ‘cement. A linear model specifies for

each reinforcement E o matrix L(E) such that

(58)  (pyy | poEY = p LCE),
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as well ag a starting vector, p.. Without placing further consir3ints
on L, we have an N x (N~1) parameter model. Io pare these down %o a
single parameter, we make four further assumptions. The first, third,
and fourth aszsumptions seem indispensable; relaxing the second would
glve a somewhat more general model., The assumptions are these.

1. Relabeling the response alternatives in no way affects the
predictions of response probabilities.

2. If ac En’ where En ig the subset of the response alternatives
in the reinforcement set on trial n, then lii(En) = 1. 1In the example
of (55), this corresponds to assuming a = 0 instead of simply assuming
a < 0,

3. If re En then pi,n+1 > pi,n'

4. P, * (L/N, /N, ..., 1/N).

The preceding assumptions limit us to two distinct one-parameter
wodels. To see this, consider the Nw4 with A=2 case. For convanien.e
we consider that the first respouse is correct, i{.e., it is alweys in
the reinforcement set. Each of the remaining three responses appeazs
in the reinforcement set with probability 1/3. The two posaible rein-

forcement matrices for when . first (correct) response and the second

response are reinforced are given by:

[—1 0 0 0 M o o o
ey LW lo 10 0 L@ to 1 0 0
a/2 af2 1-a 0 a/3 af3 1-a a/3;
a/2 a/2 0 1-a L2/3 a/3 a/3 1‘Ej

The values of the first two rows follow from Assumption 2. Since the

models are linear, none of the P,y Can appear in the matrices. From
*

i
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Assumption 3, 0 < a < 1 and, from Aesumption 1, the cinstant a appearing

ir row 3 must have the same value as the o in row 4. The transition

(1)

matrix L foilows if we assume that the decrement .n any response

alternative not reinforced i{s spread eveniy awong those that are rein-

(2)

forced; L follows if we assume that the decrcment is spread among

all the rest.
Let us now derive the learning curve for the L(l) transition matrix.
As there are three equiprobable reinforcemer.s, and again assuming that

response 1 {s correct,

P;f;+l = 1/3 (1 - pl,n +0 - P2.a + ; " P3n + % Pa,n)
(60) +1/3 Q1 - Pln "’% " Pon +0- P3 n +% | pb.n)
FUIQbpy 45 Pz,n+; "Py gt O P )
or
(61) p{f3+1 - pl.n + g a- pl.n)'

(W3]
~—
d
4

l,n

62) M e [g a-

(D

Using similar srguments with the L transition matrix, wve find that

r- n-1
(63) p{?i -1 - L? a- %9) :

These results generslize to arbitrary N and A. We continue to

assume that responss 1 is correct. The following recursion gives

P1,n+l

) Tox-L
€O Pl " Pint gy P ] '
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where L is the probatili:y of each reinforcemen: set, K is the number

of times each p, p appears in the generalir: tion of tha gum given in
EY

(60) and J {s the number by which n must be divi'ed. This number

depends on whether the decremen: 13 spread among 11 resprnse alter-

-1 -1
natives or only among these reinforced., L is equa' to (z_i) ; X equals
N-2 .
(A~l); and J equals A or N-)

Under the assuuption that the decrement is spread only among those
reinforced, i.e., JwA, the learning curve is:

(65z2) p -1 - L;-L (1 -2

(1) a N-A n~l}
i,ﬂ'rl A N"‘l ‘ !

Under the slternative assumptica, J = N-1, the learning curve is:

n-1
(65b) 91(231 -1 -[E;L a - u(N—A%) ]
' (N-1)

Before we leave the linea. modsls, consider & geometric interpre-
tatiou for the Ne=3, A=2 case (in which it makes no difference whether
the decrement {s spread to only those reinforced or to all). The tri-
angle ABC in Figure 3 represents all possible vi.) es of L partic-
ular value is shown. Assums “hat responses ! and 2 are reinforced.

Let S be the point on the line AB such thet the vectors § - P are
perpendicular to AB. Then the linesyr matrix models previcusly deve!.
oped are equivalent to the geometric assertion that P " Pt (s - p).

Thus the ares of triangle ApnB is decreased by « fixe’ f. action, whereas,

in the determinate vase, 4 length was decreased by a fraction a.
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()

(0,0,

(1,0, 0)

Fig.3 —Geometric interpretation of the linear modeis
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General Dirichlet model., As hefore, there are N response alter-

natives, A cf which are reinforced eon every trial. One of the A is
~orrect; the remaining A~l are chosen randomly from the N-1 incorrect

n { ’
responses. Let the vec.or r(n) - (r( ), pm) {n)

1 ¢+ T3 s eees Ty ) give the

probabilities of making various responaes on triazl n, Clearly,

f
{66) ‘?‘ {a) = 1and r, > 0 for 0 < § < N.

f;«fj 3

Let R be tue set of ali possible vectors r(n); K is, then, a simplex

in N-space. Our purpose first 1s to describe qualitzcively the effect

(n) (n+l;

of reicforcement on r . The vector r will be some point in the

A-dimensional simpliex in R whose peoints are linear combinations of

(n)

L end the unit vectors corresponding to the responses reinforced.

(n+1)

®
The simpiex generated by r i3 denoted A . Figure 4 shows the

case N=3, A=2 when responses 1 and 3 are reinforced.

The tasic assumption of the general Dirichlet model is that the

(n+l) (n)

value of r given r is a random variable distributed according

*

to au A-variate Dirichlet density over the region A , A further as-
sumptica 1s that this density is symmetric with respect to the responses
reinforced., More expiicity, the assumptions of the theory are:

1. The state the subject is in on trial n is indexed by a vector

r(n) - (rfn), ré“), veey rén)) whose components are such that Equation

(66) is satisfied.

(n)

2, If the subject 1s in state r* ‘, he makes response i1 wiih prob-

ability rin).

3. The density for r(n+l)

given r(n) is an A-variate Dirichlet
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P

Fig.4—Region in which ™1 will be found
if responses 1and 3 are reinforced
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density ovar the previously defined region A* with parameters @5 Gy

cers Gy and B. (See Wilks [73] for a gener-l discussion of the

Dirichlet density.) Further, a = Gj
o 0w, 1N, L., 1),

=aforisi,§<A.

The A-veriate Dirichlet dengity is defimed on the stendsrd region
X such that x, >0forl <4< Aand ;2; x, < 1. The algebraic tangle
involved in translating the region X 1:to the region A* may be avoided
by conaidering only the marginel density for the probability of the
correct reaponse {which probability will be denoied rén)}. Conaider
Figure 5. The region DEC is the straight on projection of A* (from
Figure 4) onto the Ty T T, plane. The region X is the region BDC.
Let the correct response be 3. All we need know is the marginal den-
sity along the line DE. From Wilks [1962, Th™ 7.7.2), we find that
in this case, with A = 2, the marginal is & beta density with para-
meters a and a + 8 end hence with expectation a/(2a + 8)., 1In general,
the marginal distribution 1is a beta distribution with parameters o
and (A-1)a + B and hence with expectation o/(Ax + 8).

From here the derivation of the learning curve strictly parallels

the develor ent in Subsection I.2.

(67) z(xi““)) - z(ri“)) + = - e (™)),

Repeating the arguments of Part II, Section ] we find, for A < N:

n-l1
(68)  ple )= (Qﬁ)—%’-ﬁ) N-1/N,

Notice that for fixed o, B, and ¥, increasing A decreases the learning

rate, as it should.
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D
1
E is the projection
f of T
M3
0
B r ¢

Fig.5—The projection of A* onto the r, -r, plane
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Cifminaticu models. All e'imination mode's generali:e similarly
from the models in Part II, Section 1. First the generalization of the
one -parameter model is given, followed by ti.. others in less detail.
The agsumptions for the one-parameter elimination model are the
same as those in Part II, Section 1 with the condition that the subject
can eliminate ouly the responses on a trial that have been shown to be
incorrect. Wit determinate reinforcement this cc..itlon could be
introduced, but it would be inconsequential because on every trial it
is possible te transit to state 0, that is, it Is possible to eliminate
all wrong responses. With multiresponse reinforcement the subject
cannot always eliminate all wrong responses. If the subject narrows
the correct regsponse down to a, £, or g, and is shown a reinforcement
set of a, b, e, and =, then the best he can do is to eliminate f. Thus
the new transition probanilities are tied to the normative transition
probabilities for the estimates of the “est possihble, or normative,
move. More explicitly, letting TT = [ttij] be the multiple response

elimnatlion trataition matrix,

{ - = =
(69) ttij P(staten+1 j]staten 1)

= éi; P(staten+1 = j]staten = 1, normative =k)

P(norm. =k sLuLen = i)

The sum is only to j, as the subject can mocve no {urtaer t:an the
norwative move. The secvond term in the sum is obviously just the

normative traansition probaoiiity. The first term {s the probability

st
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that if you start with i wrong responses and i-k can be eliminated, )
vrong responses remain. Thus, j-k responses which might have bee
eliminated were not. This term Is equivalent to the determinate re-
fnforcement probability of transit from state 1-k to state {-k.

Thus
i
(70 ttij - l;) ti-k ik an, .

Here the use of the 'extra' normative states is seen. If the subject
by incompletely eliminating wrong responses is in a state between D
and N¥, the normative probabilities for moves out of these states are

needed. While TT(= [t ] )} can be written {n .:rms of N, A, and ¢

tij
instead of as it was in {70), the terms do not reduce considerably,
and we feel the above formulation is conceptually clearer.

The error probabilities, gfven the state, are the same as before,

and thus the learning curve {s directly anala~ s.

N*
-, L nel
(1) P(e) = ST E = ) tt:*.j L
J’O 2z “

The generalization of the AE-2 and AL-3 mode,s {s the same as
that for the one-parameter eliminatfon model. “n {'0), for tt sub-
stitute tt' or tt", for t substitute t' or t'", and in (71) make the
same substitutions. TT' and TT" are then the new transition matrices
for the multiresponse reinforcement version of the AF-~2 and AF-)}
models, respectively,

The AL-2 model wit. ¢ set equal to U (no elimination occurs) s
an alternative extension of the one-element model. Here with prob-

abliity ¢ the subject acquires, or conditions to, the catire sroup of




responses that were both 'n memery and in the current reinforcement

set.

This generalization reduces to the normative model if ¢ 1is set

equal to 1.

The generalization of the elimination-forgiiiing model is compar-

able to that for ti.e other three elimination models. Since the incom-
plete {nformation affects only the number of responses poussgible for
elimination, not the forgsetting given the state immediately follouving
reinforcement, only the T matrix, {.e., the elimination matrix, is

affected. The effect Is precisely that of the elimination model. Thus
Lf TT is defined as in (77) the forru'aticn of the model is the same as

for the determinate reinforcement case, sustituting TT for T

Conditioning-strenzth model. The generalization of this model is

precisely parallel to the “eneralization of the elimination model. It
does not reduce to the normative model, because of the difference in

, response assumptions. Thereiure as € approaches 1, and the transition
matrix appreaches the normative matrix, the ccnditioning strencth model
predicts learnins faster than that predicted by the normative tiieory.
Needless to say, this prediction could not hold in gructice, and the

model needs investipation for more intermediate values of «¢.
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3. Paired-Associate Learning with a Continuum of Response Alteruatives

In the experimental paradigms discussed so far, subjects select
thelr response frcm one of a finite (and usually small) set of alter-
natives. Linear and stimulus-sampling models for situatiors involving
a continuum of response alternatives have been proposed by Suppes [63,
64), A brief description of experiments rur by Suppes and Frankmann
{68] and by Suppes, Pouanet, Levine, and Frankmana [70] give a feel

for the type of experimental setup we shall now consider.

In thes> experiments subjects sat facing a large circuiar disk.
After the gsubject responded by setting a pointer to a position cn the
circumference of the disk, he was reinforced by a light that appeared
at some point on the circumference. As the subject saw exactly where
the light flashed, i.e., what his response 'should' have been, rein-
forcement was determined. In these studies reinforcemen: was also non-
conuingent. The reinforcement density in the 1961 study was triangular
on O-2v; in the 1564 study it was bimodal, consisting of triunguler

sections on O-n and w2%x . By reinfcorcement density we mean the prob-

ability density function from which reinforcement is drawn. For ex-
ample, 1f f(y) is the reinforcement denaity, the probability that the
reinforcement will appear between a and b il.jrb f(y)dy, and this prob-
a
ability is contingent o~ neither trial number nor the subje-*'se previous
response,
The experimental paradigm just described correaponds more fully

to probavility learning than to PAL and will be considered again later.

Variations of it, however, correspond to PAL.
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Ccuplete information.- We consider a list of length L of distinct

stimuli (trigrams, for example). Each stimulus corresponds to a single,
fixed region on the circumference of the experimental disk. The sub-
ject 1s shown the stimulus, indicates his response with his peinter,

is shown the region considered correct, and then is shown the next stim-
ulus. His response i{s considered correct if it falls in the reinforced
region; otherwige, it is incorrect. We wiah now to derive a learning
curve for the subject.

Dencte the center of the correct region by e and let the correct
region extend a distance o on either side of e. The subject's response
is given by a density r“(x) for trial r. If the subject 1is known to
be conditioned to some point z, then the density for his response 1is
a smearing density k(x|z). The parameter z itself is a random variable,
and we shall denote its density on trial n by gn(z). The conditioning
assumption we shall make {s that with prohability 1-6 the parameter of
the subject's smearing distribution makes no change after reinforcement,
and with probability 8, z is distributed by an 'effective reinforcement
density' f(y). Subsequently, we shall corsider two candidates for
f(y). First, observs what happene to the reinforcement density g{z).
(All these matters are diai.-e2. in decail in Suppes [1959] with a
different interpretation o! the effective reinforcement denaity.)

The density ~ chanpes 00t follwin wanv:
) - - \
(72) g, (&) = (1-8) g (¥) + & £(x]

I1f we assume that gl(z) {s uniform (= 1/2 ), we find from the above

recursion that

an gn(z) - (l~9)n-1/21 + (1-(1—9)""‘] f(z).




The probability of being correct on trial n, p(Sn). is given by

2n eta

(74) p(Sn) - f / k(x|z) gn(z) dx dz .
0 e-qa

Two plausible assumptions concerning f(y) are:

(75) fl(y)- 6(y-e).*

or

1/2a e-acy<etn

(76) fz(y) -’
) 0, elsewhere

I1f conditioning occurs, fl(?) scegerts that z becomes e; fz(y) asserts

that z becomes uniformly distributed over the correct region. The

learning curves for fl(y) and fz(y) follow: For fl'

eta
1) (s = =)™t 2y (1-(1-6)“‘11[ k(x|e) dx,

e-a

and for fz,

eta e+a
- ~ - y a .
(78)  p(s) = (1-)""1 -+ (1-(1-8)" "} g j / k(x|z) dx ds
e-a e-a

Yor the present, we ghall derive no further statistics for these models.

Incomplete information. Tha experiment is organized so that a

total of A regions of fixed width 2a are presented to the subject each
time he is reinforced. One of these regions i{s fixed with center at
y; the others have their centers uniformly distributed on O-2v each
trial. (Hence, there can be overlap among the reinforcers.) A list

of stimuli is assumed. Tha subject starts with 2 uniformly distributed

* e . .
The function ©(+) {s the DMrac deltr function.

H
3
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on the region 0-2n, The conditioning assumptions are: (i} if the
subject responds in a reinforced region, cond t ‘oning remains unchanged,
and (i{) if he does not, with probability (1-3) h:s conditioning re-
maias unclanged. and with probability =, [t Is spread uniformi~ over the

ra1atoreed reg ons., Let us start with some detin tions. The total

area expected to be covered by reinforcers cn any given trial. is v,

where

2
(79 1\ -—f {z~ - 2\/)A de,
0

and hence,
- A
(80) v - 21 - 2+ - 2vy) .

Let s denote (ne event ol responding tu a4 reintorced region on trial o,
n

W the event of heing wrongly conditioned on trial n Cn the event of

n

beirg correctliv cond tiened o wrial o (i.e., z is i{n the onc ‘correct’

Texlon) Thea,

J?O YJQ
(81) p (snICn) =5 1120 J[ .f k(x{z) dx dz = 2, by d=iilnition, ind
y-o y-o

R i A
o . . P a(Ze .2 £ oas, Vew
(82 P (s [W ) = i-( a)

LARERS

Equation (81) is an & proximation, because there {s some (sma'l) probability
that the subject will guess outside the corr~ t region 4nd be reinforced

oy one of the distrdactors. Also, we car write the trankition probabilities:

3 H - N . \ P ; -
(33) P (le‘cn) P(cml;cns“) PgSn, u(cml‘cnsn)

mi e (1 -8)(1 -8 < (1. a) s 2o = m, by derinition
N
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and

‘ v Y 2y
c i = — ) A — = inits
P(vnlh’n) o + {1 2“) ‘JY n, by detinition.

The transition mstiix betoseen states and error probability vecter are,

therefore,
(84) T =

If Sn is the vector that represcnts the probehilities of beirg in the

. a  %- . ) .
2 states on trial n, then S] s (-; , ~;2 ). The learning curve is:

B
-1
(85) P(x_ € correct region) = S]Tn lewJ .

We shall complete this discussion of deriving the expression for
the powers of T. The eigenvslues or T cun be shown to be: Al =1

and Xz = m-n. Let Q be the matrix uf the eigenvoctors generated from

Al and Xz. Then,

86) Q= " and gl . E n

It {s a theorem of matrix analysis that

n n -1 [ \1 0
(87) T =Q ./ Q where 2 =
Lo \2

By multipliying and simplifyiig as much &s possible, we {ird

[n + (1~m)(m-n)n l = m + (1°m)(m-n)n~] ]
(88) T“ - = +]
n o+ (m*n)n 1 - m+ (m-n)n -
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II. PROBABILITY LEARNING

If an experiment is constructed so that the only reward a subject
receives is that of being correct, the reinforcements cen be character-
ized by the amount of information he receives concerning the corrvect
respense. More specificaily, if R is the set of response alternatives
and § {s the set of possible reinforcements, then S i¢s the set of all
subsets (power set) of ®, The notion here i{s that after responding
on a given trial the gubject is shown Some e € € and told that the

correct response for that trial is included in e In the general

T
noncontingent casde (i.e., the reinforcement is not contingent on the
subject's response), each e will be shown with a probability 71 in-
dependent of the subject‘s prior responses and the trial number,

We now consider the experimental paradi;m in which the number of
responses in the reinforcement set is a constant, 1 (1sjsN, where N is
the cardinalitv of &), but no one response is necessarily always pre-
sent, Thus, the paradigm is that of probability learning,

Frevious theories of probability learning have dealt primarily
with the case i=l, We shall present theories for arbitrary j. The
first theory presented is attractive since it implies a natural gen-
eralization of the well-known probability matching theorem. Unfor-
tunately, this theory is intuitively unacceptable for extreme values
of the m's, The second theory gives the probability matching theorem
for =1, but unless j=l, or N-1, it is mathematicallv untractable.

These two theories Jre essentially 41l or none; we shall also dis-

¢uss a third, linear theory.
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1. Probability Learning Without Permanent Conditioning

The assumptions of this theory are:

1. On every trial the stimulus element is conditioned to exactly
one of the N responses, or it is unconditioned. At the outset it is
unconditioned.

2. After reinforcement, the stimulus-element conditioning remains
unaltered with probability 1-3, The stimulus eiement becomes condi-
tioned to any one of the A members of the reinforcement set with prob-
ability 5/A.

3. 1f unconditioned, the subject makes each response with a guess-
ing probability of 1/N; if the subject is conditioned, he makes the

responsé he is conditioned to.

b

We shall designate the set of possible responses by A = {al,az,.,.,aNJ.

The probability of response a, on trial is dencted by Py o The as-

i
ymptotic probability of a, i,e., lim Py o is denoted Py By relabel-

N~ ™

ing, any responfe can be denoted ’al'; hence, we shall derive only P

As each reinforcement set has A members, there are a total of (2) = N!/

Al(N-A)! different reinforcement aets. Jf these reinforcement sets a

N-1 )

number k = ( A-1

will contain al. We shall denote by SIS TRERTTN

those reinforcement sets that contain a3 the probabilities that these
reinforcement sets will occur are nl,nz,....nk.
Theorem 3 (probability matching). Assumptions 1 to 3 imply that

(89) p, = Z; n A,
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Proof: Let C5

a be the event of being conditioned to a, on trial

n, and let p(Ci n) be the probability of this event. By the theorem of

total probability and by assuming that n is sufficiently large, we can

neglect the pcssibiiity o. being unconditioned. Thus, 3

¥

3

30) o~ ; , : &

i G0 poy ) = P L S P ) ) Ry Gy Py o) .
The value of p(cl,n+llcl,n) is obtained by noting that one can be in .

state C, on ntl after being in state C1 on n if either the subject's
i

conditioning is ungltered (with probability 1-9) or if a8y is in the

reinforcement set stiown, and he becomes conditioned to it (with prob-

ability 6/A

(91) p(Cl'n+llC1‘n) = (1-6) + 8/A n

12

1f j#1, the subject can be in state C, on monly if A, is in the rein-

forcement set shown and he becomes conditioned to it. Thus,

For large n, p(C

i.n+1) = P(Ci.n) =Py hence, (90) can be written

in the following way:

(93) P = (1-9) + 3/A t mle

i=]

j-
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Since i pj L

i=1

k

(95) Gp, = 9/A Z; T

which, by cancelling 9, gives the desired result:

(96) P, ® . /A. Q.F.D.

1

Some special cases of the above are: N=2 and A=l; here Py =7
For N=3 and A=2, P, = (ﬂl + Wz)/Z; for N=6 and A=3, P = (ﬂ1 o,

+ nlo)/3.
Let us look at the case N=3 and A=2 in a little more detail:

}. Assume that 1 = T _= .5

e = {8 .a 1, e. = 'a ,a b, and e, = [a 1 2

1 2'°3 2 13 3

,a

2’73
and T ® 0. Clearly, then, Py = .5 and Py = Py ™ .25. Notice that

since "3 = 0, al

experiment reported in the Appendi~ show that when one response is al-

iy always in the reinforcement set, Data from the

ways reinforced (paired-associate learnins®, subjects learn to relect

it only. Hence the empirical value of Py is 1. It is obvioua. then,

that the theorv just presented will break down if one or more of the :

s tends to zero; how well it wi.. do ftor nonextreme values ot the
T remains to be .een,

2. Probability Learninyg With Permanent Conditioning

Assumptions 1 and 3 of this model arc the same as for prolability
learning without permanent conditioning. Assumption 2 s changed to;
2'. (1) 4f the stimulus element 18 conditioned to one of the

responses reinforced, it remains so conditioned; and
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(1i) 1f the stuwlus element 1s aot conditioned to one of the
regponses reinforced, then with probability 1-06 {ts conditioning remains
unchanged, and with probability 9/A, it becomes conditioned to any one
of the A members of the reinforcement set.

Unfortunately, this model is less mathematically tractable than
the preceding one and asymptotic response probabilities were cbtained
only for the special cases 4A=l, A=N-1, and N=4 with A=2, As before,
the subject's being in state i on trial n will be denoted by C

i,n
Let us first derive the asymptotic respcnse probabilities for A=l,

The reinforcement sets are e1 = [al}, e2 = [az}, etc,, and appear
with probabilities nl, "2’ cee WN. Thus,
(9 PG, a1 !Cy ) = (1) +r

since with probability 1-9 the subject's conditicning undergoes no

change and with probability vib he is reinforced with a, and conditions

to it. If j#], p(ci.n+l\cj,n) - nid. By the theorem on total prob-
ability,
xx - ﬂ - ¥
(98) Py {(1-0) + ﬂiO)pi + S ﬂiOPJ m, o,
i=l
But this is equivalent to:
N

(99) p = (1-7)p, + 97, :E; Py
J-

8o we obtain, for A=l, the probability matching result:

(100) p. = 7,

e AR

Lo tE ORI

2
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For A=N-1 let us denote the reinforcement gsets in the following

way: e, = {aj: j#1}. That is, e, contains all the rasponses except

i

a Clearly there are a total of N reinforcement sets whose proba-

i'

bilities will be given by = S At this point it may be

1? Tgs creo

helpful to lock at the transition matrir from state C1 to the other

states., The notation Ciej means that the subject was in state Ci and

received reinforcing set e

g

1 2 i N
Ciel 0 0 1 0
CieZ 0 0] 1 . 0
(101)
Ciei 8/ (N~-1) 8/(N-1) . . . 1-e . . . 8/(N-1)
CieN 0 o . 1 . 0
Thus we see that p(Ci'n+1 Ci,n) i8 equal to (1_“1) + (1-e)w1. For i1,

p(Ci.n+1 Cj,n) - 8/(N-1). By the theorem on total probability, we

see that:
N
(102) p, = (l-n, + w -6n ) p, + 8/(N-1)’ :E: . p LY
1 O S M ooy K k[ T1fay
or
(103) mPp F NPyt e FMp o+ - N p, -




As this 1is true for all {,

Since Py + Py + .0+ Py + ...

P, P p
(105) 2o 2, v
Py Py

P
L + —!
Py Py Py

Substituting (104) into (105) we obiain

N "i
P ™ 1/2 ;,'1:.
kwl

which 18 equivalent to

n
. ° , 1

RN
(107) p - 2h 1 1

i -y / N
ELJ( Ty j/w
3=174/ "k

k

The derivation of asymptotic response probabilities for Ne4, A=2
is both tedious and unflluminating; we ahall state only the results.

The six reinforcing events are labeled as followe:

ei - idl,az',
e, = {&1,a3}, ey = (11,14}. e, - (12,a3), o - (az,ua), and e - {n3.u“).

The response probabilities are given by:

1

(108) p=B r
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where

- — - A -

Py 1 1 1 1

p 0 =2(m, 4 _+1.) 4T n,+n
(109) p = 2 r - and B = 456 4 75 476

P3 0 ﬂ4+ﬂ5 -2(ﬂ2+ﬂ3+ﬂ6) nl+w5

P, 0 rl+ﬂ3 ﬂ2+w6 -2(n1+n3+w5)

— —t h-J —

When A = N=1 6 1{f L is equal to zero, a, will appear in every rein-

i

forcement set. As we have seen, the theory of probability learning with-
oul peruwanent coaditioni~g faills to predict the empirical result that in
this case Py equals one. The model just described does pradict that pi-l

=0 and for jdi " > 0. To see this, let us

on the assumptions that ”i

write out (107):

"2 M1y

“1“2"'“N—1 + ... + “1"2"'"1-1“1+1 + ... Mgt Ty

(110) p, =

Now all the terms in the denominator but one contain wi; therefore, they

vanish. The one that does not contain "y must be unequal to zero since

for j¢#1, =, > 0. But this term is the same term as the numerator so

b
that pi-l.

3. A Generalized lLinear Model for Probability Learning

In Part II, Section 2.3, two distinct linear models for p..rcd-
assoclate learning were developed. We will applv the model exemplified
in the matrix L(1) of Bquation (59) of the preceding section. The basic

assurmption behind matrix L(l)

1s that the decrement in response proba-
bility of & response not reinforced on a tri{al was t» beé spread uniforzly

only among reinforced responses. As noted previouslyv, with ¥ response
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alternatives, A of which are reinforced on any trial, there are (i) - J

1)
different reinforcement sets, k of which contain al, where k = (2 i),

Let us label the reinforcement sets in such a way that the first k con-

tain a, then determine Py- the asymptotic response probability tor ay.
The probabilities of the J reinforcement sets are given by M Tyeeen ™

The recursiovn Lor Py iat
L

n+l

J r
- ) X(N-A) .
(111) pl,n+1 [(1 ))pl,n] Z ni + lpl.n + N1 (1 pl,n) E wi.
i= 1 1=

The first teirm on the right-hand side represents PI o+l given that &)

wag not reinforced on trial n times the probability that it was not

reinforced; the second term is analogous except that it assumes a, was

reinforced on n. The part in brackets in the second term of the right-

hand side foliows from (64).

We now define two terms:

N-A
(112) I n - "

13k+]

from which it follows that (1 - ) = Z n Here T 48 the protabdbility

1™,

X
that Lh not e included in the reinforcement set and 1-M is the prob-

ability tnat 4t is {ncluded. We can now rewrize (111) as

(113) Py = (-Mp, ot Py + >r(1-p1_n). (1-R)

,n+l W0

P LRt _:r(l-n).il-pi'n).

)

y
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; hence,

h 4 p 1 = =
Tn tne limit, p1 pl‘n

pl,nﬂl
(114) uﬂpl.n = yr(l—ﬂ)(l-pl.n).

From this {t follows that:

- rd - )
(115) °1 T U ¥ r(1-m)

As a special case of the above, if A=1, then r=! and p1 =1 n
giving probability natching.

This completes our discussion of probability learning with finite
response sets., We have developed only a sample of the theories possible
to obtain in analogy to the theories of paired-assnciate learning. It
would seem profitable to ohtain some data before conti-uiov the theoret-
ical development to. tdr bui, >0 tdr a> we kunow, the oniv relevant data
for A22 are from unpublished work of Michael Humphrevs and David Rumelhart,

4. Probabilicty Learning With a Conticuum of Responses

The experimeni discussed in Part I1. Section & for a response con-
CLnnnt % a4 eXaupie o probabiarty searnineg withoa coadinuwn of re-
sponse and reiatoriement posasibilivies. The next paradign discussed alse
hes o continuum of respoenses, bul ulscrete reintorcemen: .

Probability jearning with left-right reinforcement. Consider &

tJ

task in which the subject is placed before & straight bar (perhaps
feet lony) with a ifight bulb at either end. The subject ia told that
when he indica.es & point on the bar at the bhexinniny of each trial

one of the lights will fiash., Hie task {s to minimize the average dis-
tance between the point he seiects and thr light flash on that triai.
Clearlv, thi< is a task with a continuum of response alternatives; 1t

differs frow the probability learning ic ks 1o be de..r:bed since
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there are only two reinforcing events. We shall call this task prob-
ability learning with left-right reinforcement. Reinforcement is deter-
minate since, after one light flashes, the subject knows he should have
selected that extreme end of the bar,

We first show that if the subject believes the probability of the
left lisht flashing, P(L), differs firom .5, he should choose one ex-
treme or the vther. Number the leftmost point the subject can select
0 and the rightmost point 1, Let ro denote the subject's choice on

trial n. Let k equal his loss, If the left light flashes k = T and

if the rivht light flashes k 1-rn. His expected loss is given by:

(116) E(k) = P(L)r_ + (1 - )] (1-r ).

Differentiating with respect to r we obtain,
17 %%i£l = 2 P(L) - 1.
n

Assume that P(L) > .5; then the derivative of the subject's expected
loss is strictly positive, that i,, E(k) is an increasing rfunction of

r_ so E(k) is minimized by choosing - 0. Exactly similar arguments
n

‘hold if p(L) -~ .5.

The strategy just analyzed is an optimal strategy. Our belief,
however, is that the subject's behavior will be analogous to the prob-
ability-matching behavior exhibited in finite probability learning
situations. That is, we expect that rn will approach 1-nL where qL is
the noncontingent probability that the lext i11.ut will flash.

A simple linear model gives this result. Let T be given {in terms

of r ¢
n
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' = -2) if ht iig shes
(118) €4l (91'n + 1-9) if right iight flashes

etn if left-light flashes .

It is then easv to show that

(119) lim r_ = 17, .
[$2d n -

The linear model predints, ol course, considerable variation in L
even after its expected value reaches asymptote,

Let us now turn to a stimulus-sampling model that slso gives prob-
ability matching, but that predicts decreasing motion ground 1-7  as
n increases. In the stimulus-sampling model, the subject is conditicned
to one response or any given trial, He chooses his response, however,
from some distribution '‘smeared'’ about the response he is conditioned
to. In most stimulus-sampling models this smearing distribution,

Y(rie) where p is & vector representing the pzrsmeters of the distribu-

i

tion, maintaings a constant shape in the course of learnin;;., In thic
model the shape of the distribution changes as does the response it is
smeared around, Specifically, the modei assumes that k is a heta dis-
tribution with paraucters an and 35. The expected value of L is, then,

1

S rk(rlan,in)dr. Since k 1s a beta, this becomes

0
%n
(120) E(rn) = 5::1;7§;- .
The model fuirther assumes that a, = EERE where ‘l Ly Ja parameter fo
i

be estimated The conditioning rule is:

(121) N ) Voo < it the right light flashes
it the left light flashes
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and
(122) a ,cfa 1f the right lxght flashes
': + ¢, if the left light flashes

where ¢, is the sewcond paraneter of the theor. .

<

For n large,

c, + cqn(l-wl)
3) i ——— - L 1-1
(123) ﬁimw E(r“) Zngqn(l-" Y o 20

L 22

W

which corresponds to probability matching. Assuming that the prob-
ability matching prediction is borne out, this model can be compared
with the linear model on the basis of resnonse variance for n large.

Modification of subjective probabilities. In estimating a prob-

zbility a subject may be said tc be responding from a continuum of
alternatives. If he is then reinforced with new information relevant
to the probability in yiestion, the 'normative' prediction is that he
will modify iiis probabiiity estimite in accord with Baves' theorem,

It is our purpose in this subsection to lock at one type of probability
modification behavior from an explicitly learning-thecretic point of
view,

Let the subject have some simple means of responding on the in-
terval [0,1]. Denote his response on trial n by P, The experimenter
places before the subject a jar containing a large number of marbles,
say 1000, He tells the subject that there are 1000 marbles in the jar
and that the only colors the marbles may be are chartruese (C) and
heliotrope (H). The subject is told that there may be from 0 to 100C

of each color of marble. Under these circumstances Jamison and Kozielecki
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[37]* showed that subjects tend to have a uniform density for p(C) where
p(C) represents the subject's estimate of the fraction of chartreuse
narbles. ilence, it is natural to expect that by will equai 5. In the
experimental sequence, the subject responds with pn; the experimenter
fishea a marble frem the jar, shows it to the subject, and replaces it;
the subject responds with Poel The similarity between this model and
the left-right probability learning model mentioned previously is clear,
Let us use the stimulus-sampling model developed for that situation
(128)-(131). From Jamison and Kozielecki's observations it %s natural
to assume that the parameter ¢ ot that model be equal to one. Results
of data presunted in Pe: vson and Phillips [51] indicate that ¢,
should be near cne and observations by Phillips, Havs, and Fdwards [52]
indicate that c2 should be less than one. At any rate, after seeing

n. chartruese and Py helitrope marbles, the density for p is:

~

. 1 p'c %2 (1-p)"u®2
(124) r(pn) B(ncc2+1, an2+l)

where n = n, + n

c " and B(-, ) denotes the beta functicn of those argu-

ments. The expectation of this density is:

(125) E(p ) = -

Asymptotically, this model implies that the subject will arrive

at the correct probability. It ¢, =1, the sublect's hehavior is nor-

mative throughout. Thus our leurning model, if it gives an adequate

*
Part ¥our/One of this dissertation.
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sccount of this type of data, yields the same results as a Bayesian
model, (In a sense, cz%l generalizes the normative niodel, See Suppes
[65] fcr an account of the one-element model viewed as a generalization
1 Bayuslar updating.) What are the implications of this?

If we assume that the stimulus-sampling model is also adequate
tor the left-right probability learning situation, we have a single
learning-theoretic model that accounts for behavior that in one case
is normative and in the other case is not. Bayesian or degraded
Bayesian models are udequate in some cases, because they approach the
learning-theoretic models. The implication here is that our notion

uf optimality is very limited,

Multipoint reinforcement. We now consider a probability learning

parad‘gm with & continuum of responses analogous to that with a

finite response set, but A (the number of responses in a reinforcement)
1s greater than 1. There sre A points on the circumference of the
circle reinforced after the subject has set his pointer. With prob-
ability 1-6 the mode, z, of his smeariang distribution (defined prior to
equation ., ") is assumed to remain unchanged. With prekehil{ty 6/A, z
moves to any one of the points reinforced. Thus the recursion on the

density for z is given by:

(126) gn+l(z) = (l_e)gn(z) + 9/A tl(z) + 9/A tf(z) + ... +8/a {\(z),

‘
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where fi(z) gives the density from which the ith reinforcement was

drawn. For large n, (z) = gn(z). Hence,

gn+1

(127) g _(2) = g_(2)(1-8) + 6/a [il(z) +ED) 4L+ fA(z)]

£.(2) .

g Lt

1=

In Suppes [1959], the usymptoiic response density, r (x), is derived

from the above and shown to be:

2~ A

(128) r_(x) = % S k{x!z) :E; £i(z) dz.
0 1=

The in*<resting predicrion of this theory is that the same r (x)
is obtainable for multiple reinforcement as for single reinforcement,
if the density for the single reinforcement {s the average of the
densities for multiple reinforcement.

Let us consider one ocaer probabtility learning task. The subject
is reinforced on each trial with a region of length 2% centered at y
where y is a random variable with density f(y). The simplest assumption
is that if the subject becomes conditioned, he conditions to point vy,
If this is 80, cleaxly, tn(x) must be piven by:

2
(129) r.(x) = S k(xlz)f(z)dz.

e
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This is somewhat counterintuitive since it i: independent of @, Per-
haps a more reasonable conditioning assumption would be that z 1is dis-
tributed uniformly over the reinforced region if conditicainyg occurs,

Let us; define U(zly,&) to equal 1/2a for y - ¥ S z S y 4 2 and 0 else-
where. The density for z on trial n+l, given that conditiuvning occurred,

is denoted Ug(z); it is given by:

2n
(130) u,(2) =s ufzly, @) £(y) dy.
0

The recursion for gn(z) is, then,

(131) Boe1 (2) = (1-9)p_(2) + 08 U (2),

and the asymptotic response density is:

2-
(132) r_(x) = S k(x‘z)ua(z)dz
V)

We shall derive no further statvistics for these models at this time,
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IIT. CONCLUDING COMMENTS: MORE GENERAL INFORMATION STRUCTURES

In the experimental paradigms discussed thus far the set E
of possible reinforcements can be divided into two subsets for each
stimulus-response paiv. One subset contains reinforcements that indi-
cate the subject's response to the sfimulus was 'correct'; the other
contains reinforcements that indicate his response was 'incorrect',
By his design of the experiment, the experimenter chose a probabiiity
distribution fo: each S-R pair over thc set of possible reinforcements;
this distribution generates a distribution on the subsets 'correct'
and 'incorrect'. If the subject can choose a response to each stimulus
so that he is certain to receive a 'correct' reinforcement, we have
the case defined previously in this paper as paired-associate learning.
I1f the distribution on E depends only on the stimulus and not on trial
number or the subject's response, the reinforcement is noncontingent.
1f the distribution on E is noncontingent, and there is no resv»onse
that will insure the subject he is correct, we have probability learn-
iny

OQur purporns fn this concluding section is to consider briefly the
case where the set E has more than twe subsets that are equivalence
classes with respect to their value to the subject, To uive a more
concrete idea of what we have in mind, we will first discuss the ex-
periment by Keller, Cole, Burke, and Estes [40] that illustrates the

notion of intormation via differential reward.

The subjects were faced witn a paircd-associaste list of 25 items.
There were two response aiternatives and 5 possible reinforcements--

the numbers 1, 2, 4, b, and 8. One of these numbers was assiyned to
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each 3-R pair as its point value, The subject was told that his pay
at the end of the session depended on the number of points he accu-
mulated. So, for example, if the reward for pushing the left button,
if XAQ were the stimulus, was 4, and the reward for pushing the right
button was 1, the subject should learn to push only the left button.
The experiment was run under two differvont conditions. 1In one the
subject was told at the end of each trial the reward value for hoth
of the possible responses; in the other he was told only the reward
value for the response he had selected. 1In the latter case, since
there were more than two possible reward values, knowing the value of

one response gave only partial information concerning the optimal re-

sponse, This is an example of information via differential reward.
Let us consider now information via differential reward in the
context of alternative tvpes of information a subject might receive,
A learning experiment may include: (i) a set S of stimuli, (ii) a set
R of response alternatives, (iii) a set E of reinforcements, (iv) a
partition P of E into sets of reinforcements equivalent in value to
the subject, and (v) an experimenter-determined function f tria SxR
into Pe’ where Pe is the probability simplex in e dimcnsi.ned space
and e is the cardinality of E. The probability that each reinforce-
ment occurs is given by f as a function of the stimulus presented and

the response selected. If e' is the number of members in P, i deter-

mines a function f' 1ro. SR .t Pe" and f', then, gives the prob-

ability of each outcome value as a function of the stimulus and re-

sponse chosen., The subject's task in 4 learning experiment is to learn

as much as is necessary about f' so that he may make the optimal re-

sponse to each stimulus,
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The subject learns about f' from information provided him by the
experimenter. We may classify this information into three broad types.

First, exogenous information is provided beforc the experiment begins,

The subject learns what the responses are, what the stimuli are, whether

reinforcement is contingent, possible reward values, number of trials,
etc, Parts of this exogenous information might, of course, be delib-
erate misinformation.

The second type consists of information concerning f' for a fixed
stimulus., In a typical paired-associate experiment the subject re-
ceives complete information concerning f' on each trial for each stim-
ulus. 1In the paradigms considered in Part 11, subjects are given
partial information by having E be the set of subsets uvt R (perhaps
of fixed cardinality). The subject is told on each trial that the
correct response was among those shown., Another type of information
concerning the optimal response to a given stimulus is information via
differential reward. Here the subject learns the rewards accruing to

the members of the reinforcement set. The forms of information of .

this type depend, then, on the structure of the reinforcement set.

The third consists of information concerning f' for a fixed re-
sponse. That is, does knowledge that response i is optimal for stim-
ulus j give any information relevant to the optimal responses for other
stimuli? This third tvpe of information is obtained by "concept for-
mation', 'stimulus generalization', 'pattern recognition', 'recognition
of universals', etc.; the tcerm chosen depends on whether you are

psvchologist  engineer, or philosopher,
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Notice the symmetry between the second and third types of informa-
tior a subject can be given, For a particular stimulus, the subject
may receive knowledge relevant to the optimal response that concerns
structure of the respomse set, For a particular response, the subject
may receive information about the stimuli for which that response is
optimal by placing structure on the stimulus set. The role of informa-
tion via differential reward in this context is one way of placing
Structure on the reinforcement set; earlier sections of this disger-
tation considered other ways in detail.

For concept formation, there must be some sort of structure on
the stimulus set. Roberts and Suppes [53] and Jamison [35]* ad-
vanced quite different models for concept learning in which the basic
structure on the stimulus set is of a particulariy simple form, but
they jointly assume that each stimulus is capable of being completely
described by specifying for each of several attributes (e.g., color,
size, ...) the value the stimulus takes on that attribute., We con-
sider it an important theoretical task in learning theory to describe
in detail other forms of structure that can be put on sets of stimuli.

The results in this paper should be considered as simply a pro-
legomenon to detalled analysis of information structures in learning
theory. Our results have been limited to rather special types of in-
formation scructures placecd on reinforcement sets. More general struc-
tures need to be considered and, more important, information structures
on stimulus sets—--concept learning--must be brought within the scope

of the analysis.

*
Part Three/One of this dissertation.

e
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Section Four

EMPIRTCAL STUDTES

In this final section I report on several empirical studies of
individual choice behavier. Simon [15, p. 2] has observed that this
is an arcea of study that has little interested economists: "Econcomists
have been relatively uninterested in descriptive micrceconocmics—-under-
standing the behavicr of individual economic agents—-except as this has
been necessary to provide a foundation for macroeconomics. The norma-
tive economist 'obviously' doesn't need a theory of human behavior:
he wants to know how people ought to behave, nct how thev do behave'.
While Simon's comment does seem generally valid, empirically oriented
papers concerning individual choice behavior do occasionally appear in
the economics literature. Some of these studies--for example the duo-
poly studies of Suppes and Carlsmith [16] and Friedman [5]--are attempts
to represent organizational behavior bv that of individuals. The rest
of these studies are genuine attempts to study individual choice be-
havior, though admittedly under somewhat contrived circumstances. It
is this last type of study that I shall report on here; the next three
parts of this dissertation are empirical studies related to the theo-
retical developments of Section Three,

Part Four/One revorts on an attempt to empirically measure the

structure of subjects' beliefs under conditions of total uncer:iairty--

where they have no information concerning the relevant vrobabilitics,
This work was done in collaboration with Dr. Jozef Koziclecki of the
University of Warsaw and has been previonsly published-=Jdar ison and
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Part Four/Two is concerned with Individual learning or adaptive
behavior when his reinforcements carryv only partia' infovmatieon (. .
cerning the optimal policy. This work is closely related to the theo-
retical developments of Part Three/Two and was done in collaboration
with Mr. Richard Freund, Prof. Fatrick Suppes, and, primarily, Miss
Deborah Lhamon. Tt will be published as a part of Jamison, Lhamon,
and Suppes {8].

Part Four/Three reports on an unpublished study of individual in-
formation seeking behavior done in ccllaboration with Miss Amy Hersh.
The results are quite erratic. While this may be an artifact of our
particular experimental design, I am inclined to think otherwise. In-
formal experimentation earlier by Mr. Michael Humphreys and me using a
computer control of subject stimulus resulted in similar erratic be-

havior.

e
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Part Four/One
SUBJECTIVE PROBABILITIES UNDER TOTAL UNCERTAINTY
I. INTRODUCTTON

Humans must frequently choose among several courses of action under
circumstances such that the outcome of their choice depends on an un-
known "state of nature'. Let us denote the set of possible states of
nature by Q@ and consider Q to have m members that are nutually
exclusive and collectively exhaustiven-wl, Wos woe p W e The vector
? = (£)5 Ey» -+- » ) is a probability distribution over 2 if and

only 1if ? £

: = 1 and gi Zo for 1 =1, ... , m. ¢ corresponds
i=1

i i

to the probability that wy will accur.

Edwards [3], Luce and Suppes [1l1], and others, dichotomlze exper-
imental situations involving choice behavior in the following way. If
the decision-maker's choice determines the outccme with probability 1

(1.e., one of the £,'s 1is equal to 1), then the experimental situa-

i
tion i8 one with certain outcomes; otherwise, the outcome is uncertain.
If the subject knows the probability distribution over the outcomes,
i.e., 1f he knows E, his cboice is risky; if he only has "partial
knowledge" or '"no knowledge" of £ his choice is partially or totally
uncertain. We shall use '"total uncertainty" in this last wav; our
purpose 1s to examine the structure of a subject's beliefs when he has
no knowledge of Z, that is, when the S 1is totally uncertain.

Jamison [6] has proposed a definition of total uncertalnty that i3 an

extension of the Laplacian principle of insufficient reason. This
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definition and some of its implications will be described briefly here
as theoretical background for our experimental results.

Consider the set of all possible probability distributions over
2, that is, the set of all vectors E. Let us denote rhis set by %
and describe the decision-maker's knowledge of E by a density

£(r,, ¢ 5m) = f(f) defined on T . If £(f) is an impulse

~

LIRERE
(6 function) at * = (1, 0, ... , 0) or £=(0, 1,0, ... , 0), or
ceny ; = (0, 0, ... , 1), then decision-making is under certainty. If
f(?) is an fmpulse ~lsewhere in %, the decision-making is risky. If
f(?) is a constant, the decision-maker is, by definition, totally un-
certain of ?. The intuitive motivation fer this definition is that

if f(g) is a constant, no prebabilitv distributions over Q are more
likely than any others. Partial uncertaintv occuiurs when f(g) is

*

neither an impulse nor a constant.

»
If K 1s the constant value of f({) wunder total uncertainty,

ff 3 .der,mdF,m_l. . .d{l = 1. (1)
)

Evaluating this definite integral enatles us to find K, which turns

then:

out to be (m - 1)! . /m. The probability that ﬁ] I1s greater than

some specific value, sav C, 1is given bv:

} 1—{1 l-ilwﬁ.—...—F 2
2 -4,
T m Kdf 17 ... df
/(‘. ,/: /(: oK m-2""m=3"" %

(- oy™h (2)

]

prob({1 ~C)

- .
Luce and Raiffa [10) review normative theouiles of decision-making

under total uncertainty. Extenslons of thoss other iheories may be found
in Atkinson, Church, & Harris (1]. Savage [13] presents a number of ob-
Jectlons to the probahility of probabil{ities approach used here. These
aiternatives and objections are discusged in Jamison [6].
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One minus prob(gl > (0) is simply the probability that ¢ < C or the

1
marginal cumulative for gl, which we shall denote by Fl(C). By

symmetry Fl(C) = FZ(C) = ... = Fi(C) = .., Fm(C); thus we have:
F (O =1-@a-0™h (3)

Fig., 1 shows Fi(C) for several values of m.

Insert Fig. 1 about here

The derivative of the marginal cumulative is the marginal density,

which we shall denote fi(C):

dF, (C)
£,(C) = —

L - m-Da-0™ (4)

Fig. 2 shows fi(C) for several values of m.

Insert Fig. 2 about here

The purpose of our experiment was tc detcrmine if the normative
model just described for belief under total uncertainty approximates
the actwal structure of Ss beliefs. To achieve this purpose we
placed Ss 1in a situation of total uncertainty and then empirically

determined the cumulative Fi(C) for a number of values of m.
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II. METHOD

Subjects
The 8Ss were 30 students from Stanford University fulfilling
course requirements for introductory psychology. Each participated in

one experimental session of approximately 30 minutes duration. Ss

were run individually.

Experimental design and procedure

At the onset of the experiment the Ss were told that the ex-
perimenter wished to examine his beliefs concerning the outcome of a
hypothetical scientific experiment about which the Ss would he given
very little information. A particle measuring device would be placed
into an environment in which there were m distinct types of particles.
The Ss were told that the particle measuring device counted the num-
ber of each type of particle striking it in any given time interval
and that it was left in the environment until a total of 1000 particles
of the m types had been detected. A copy of the instructions is in-
cluded as an Appendix to Part Four/One.

The experiment consisted of three series run with 10 subjects

each; in Series I m

1

2, 1in Series IT m =4 and in Series III

m= 8, For m= 2, the particles were named w and e: for m = 4
they were named w, €, §, and ¢; and for m = 8 they were named w,
€y 8, ¥, &, T, x, and €. The experimenter asked the Ss a list of
questions of the following form: ''What do you think the prnbability
is that the particle measure device counted less than 500 c¢-particles

among the 1000 total'? The Ss were asked to write their responses
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as a two-digit decimal on a 3" x 5" card, then to tuin the card over.
Fach S was given all the time he wished to answer. With = = and
m =4, Ss were asked for each particle what he theught the prebability
was that less than 25, 100, 200, 350, 500, 650, 2300, 900, and 975 of
Lthat type of particle would be among the 1000 counted. The question
order was random. For m = 8 the 350, 650, and 97" questions were
deleted. After the experiment Ss were 1ished questions concerning

their mechod of answering.

TIT. RESLLTS

‘he results were a number of discrete values of F4(C) for each
particle and for each subi~- . For each particle we pocled the results
of the 10 subjects who were tested for each value of m. We then did
a standard analysis of variance test to zscertain whether anv signifi-
cant differences existed in Ss' r1.sponses for the different particles.
As Table 1 shows, there were no sfgnificant differences among particles

at the .05 level.

Table 1 - Analysis of Variance on Differences Among farticles

Serles df 3 Signiflcance level
m= 2 1/162 10 p > .05
m= 4 3/7324 .35 p > .05
m=8 7/432 1.03 p > .05

What Table 1 indicates 1s that Ss uccepted Laplace's principle
ot Insufficient rerason; they showed no preference for any particular

particles. The Ss' answers t» questlons after experimentation
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cenfirmed this resulu. Since Ss  szccepted the principle of insuffi-
cient rexson, results were also pooled acress particles. Figs. 3a, 3b,
and 3¢ show the normative cumulatives Fi(C) az well ps our data pelncs
pocled across Ss  and particles for each of the three different values
of m. The median responses shown in the "lgures correspond closely

to the means.

~sert Figs. Sa, 3b, and 3¢ about here

Fig. 3a -learlv indicates that for m = 2 the ncrmative model fits
the data verws well, whereas for m= 4 and m = 8 there is some re-
lation berween the - orimative model and the data but not a fit.

The variance analvsis of the <ata that is digplayed in Table 2
indicates that when m = 2 there 1s no significant difference hetween
the normative curve ancd the data at the .05 level. For m = 4 and

m = 8 the difference berween the normative curve and the data is

significant at the .001 :evel.

Table 2 - Analvsis or Variance on Differences

between Normative Models and DNata

Series Af

F Significance Level
™ ;'2 :;1'. 1.36 p > .05
m = 4 1/162 100.33 p < .001
m = 8 1,108 229.52 p < .001

Since the normative curves fit the data sco pooriv when m = 4

and  m = 8, we decided to uge a one-parameter curve of the same form
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Figare 3. Nermative mnd descriptive cumlatives for
(a) m=2, (d) m=4, and (¢) m=8.
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as the normative model and fit it to the data by least squares tech-
niques. That is, we wished to describe the data by a curve c¢f the

following nature:

m*-1

%
Fi ) =1-@Q - ¢ (5

*
The * superscript indicates that ”i (C) and m* are descriptive

rather than normative. The least squares estimate of m* 1ig that

value of m* which minimizes the & given in equation (6).

A;"?‘ ‘ *-1 2
L ,[1-(1-c)“’ ]-P,obs‘, (6)
(L hi 3
where Cl = 25/100, C2 = 100/1000, erc., and Pj,obs is the mean

probability estimate of the Ss. Table 3 shows the least squares

estimates of m* computed numerically on Stanford's IBM 7090,

Table 3 -~ Least Squares Estimates of m*

Series m* A
m= 2 1.98 .00
n =4 2.63 .04
me= 8 4.05 3.07

Figs. 2b and 2c¢ show Fi*(C) based on the values of m* given
in Table 3,

Our data indicate that Ss' beliefs are quite close to the noru-
ative model for m = 2, scarcely a surprising result., For m > 2
Ss' bellefs shift towara the normative model, but not sufficiently far.

The reason for this is suggested in Figs. 4a, 4b, and 4c where fi(C)
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*
{C) 1is the descriptive density based

s

*
and f, (C) are plotted. (f

i i

on the value of m* given in Table 3 inserted intc equation (4).)

Fig. 4 shows that 5s underestimate probability density when the

density is relatively high and overestimate the density when the

density is relatively low. When the density is cc-ostant (m = 2),

they neither underestimate nor overestimace it. This is a general-
ization to situations involving total uncertainty of the weli-known
work of Preston and Baratta [1948] and others who have shown chat Ss

tend to underestimate high probabilities and overestimate low ones.

IV. DISCUSSION

Our findings corroborate the results of Cohen and Hansel [2] that
Ss tend to apply the principle of insufficient reason if they are
given no information. In addition, the phenomenon of underes~imating
high probabilities and overestimating low 1s shown to have a direct
analog iu situations involvins probability densities. Here Ss und
estimate regions of high density and overestimate regions of low
density.

Our results have an {mportant hearing on the question of the con-
sistency of 8s' beliefs. An individual's beliefs (subjective prob-
ability estimates) are said to be incoherent i{f an alert bookmaker can

arrange a set of bets based on the person's probablilties such that
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the person can win in no eventuality. When the probabilities are well
known (i.e., when f(g) is an impulse at some particular ?) a
necessary and sufficient condition for coherence is that the sum of
the provabilities of mutually exclusive and collectively exhaustive
events be unity (see Shimony [14]). Analogously, a necessary (but
not sufficent) condition for coherence when probabilities are not well
known 1s that the sum of the expectations of the probabilities be

unity. That is, the R defined below must equal one.

m i
R = E C fi(C)dC. (7N
i=lJ o

Since all the fis are equal (from the insignificance of the differ-

ences among particles),

1

R C(m* -~ 1)(1 - C) 200 =2 (8)

]
=]

0
Thus R =1 only when m* = m. It is clear from Table 3 that when
m=4 and m = 8, the Ss 1in our experiment had beliefs that were
strongly incoherent.

Our study is an examination of the static structure of a person's
peliefs when he is in a situatic~ of total uncertainty. The natural
extension of this work is to examine the kinematics of belief change
when the S 1s glven information relevant to the situation. Work on
the kinematics of beiief change when probabilities are well know is

reported in a number of papers in a volume edited bv Edwards [4].
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Appendix to Part Four/One

Instruction to Subjects

Thke instruition; that were read to the Ss when m = 8 are given
below. The instructions for m =2 and m = 4 are the same except

for obvious modifications.

* % % k k * k% & %

We are running an experiment to examine the nature of a person's
intuitic s concerning situations where hLe has little or no concrete
evidence tc guide him. You will be asked to estimate the likelihood
of certai. propositions concerning a hypothetical scientific experiment.
While there are no absolutely “right" or "wrong"” unswer:;, some answers
are better than others Your response will be evaluated against a
hypothetical ideal subject.

Tet me now d~scribe the hypothetical scientific situation about
which we wish to examine your beliefs. A particle measuring device
i1s placed into an environment where there are 8 distinct types of
particles which we shall designate by letters of the Greek alphabet--

w, £, ¢, S, 4, £, x, 0. What the particle mcasuring device does is
count the number of each type of particle that hits it in a given time
interval. W:o leave the counter in the environment until {t has been
struck by 1 total of 1700 particles of the 8 types. Do vou remember
what the . types were? Prior to the experiment you are assumed to have

atsolutely no knowledge about the relative numbers of the 8 types orf

particles except that some of each may exist and that no other type
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of particle is in the environment. Given this scant information, a d
nothing else, we want to examine your intuitions concerning now many
of each type cof particle «will be included in the 1000 measured by *the
detector.

The questions we ask you concerning your beliefs will be of the
following form: What do you think the prcbability is that there are
less than some specific number of, say, e-particles among the 1003
wounted? This statement would be true. of course, if there were 0,

1, 2, 3, ... , or any number up tc th t number of ¢-particles among
those courted but it would not be ir : if there were more thau that
many c-particles. What you are being .sked is how likely is it that
there are lesg than that number of e-particles? If you believed that
there were certainly less than that number of e-particles, vou woulc
tell us that the probability of there being less than that number s
«v-v. If, on the other hand, you believed that there were certaic'v
more than that number of ¢-particles, you would tell us that th=a
probability that there is less than that number 1s ..... If you
believe that it 18 equally likely that there are more than that number
as less, you would say the probability 1s .5. You can give us aay
probability between zero and one.

Perhaps a more concrete example will help make things clear.
Consider an ordinary die such as this one. What do v. u think the
probability is that 1f T roll this die a number less than 2 will be on
the upturned face? What do you think the probability 1s . ¢ less than
57 Clearly, the probability of leas than 2 must be smaller thkan the

probability of less than 5. Well, you see, this I8 exactly the same
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type of question that we shall be asking concerning particles counted
by our counter. The only difference is8 that with a die vou already
have a gocd idea of the probability asked for, whereas in this experi-
ment we are asking for your i.cuitions concerning unknown probabilities,
Let me now ask you a few sample questions before we begin. First,
what do you think the probability is that there are less than 1001
y-particies among those counted? [Expiain if answer is wrong.] What
do you thirnl the probability is that there are less than 950 w-particles
among the 1000 ccunted? Less than 75 £¢? Remembering, again, that
there are 8 types of particles, what do you think the probability is
of less than 500 e-particles? Less than 950 &§? [No feedback 1s given
last 4 questions,]
In front of you 18 a stack of 3" x 5" cards that you will write
your -eplies on. b>uld you write your replies as a two-digit decimal
11{k=2 so.
Before we begin, please feel free %o ask any questions you might

have.
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Part Four/Two

AN EXPERIMENT ON PAL WITH INCOMPLETE INFORMATION

I. INTRODUCTION

In Part Three/Two several models were discussed for the experi-
mental paradigm of PAL with noncontingent, incomplete-informatien re-
inforcement. In the summer of 1967 such an evperiment was performed
at Stanford University vith several different pairings of N and A, the
response- and reinforcement-set cardinalities. This summarizes the

results of that experiment.

IT. METHOD

Ten subjects from the undergraduate and recent graduate community
at Stanford participated in the experiment for rouchly an hour a Jay
for 10 days within a period cf two weeks. An on-line PDP-1 computer
controlied all displays ard data recording, The experimentil ¢ guipment,
a cathode-ray cube (CRT) with an electric typevriter keyboard ploced
direcily below it, was housed in . sound-proof booth. The stimuli for
any problem were the tirst N figures vepresented by the ticst N kevs of
the Jdigit, or top letter, line on the kevbeard; thus thevy were citner

0, 1

A 0T, W, ... The (N:AY pairings used on the {irst 4 davs
were (2:1), (e 1), (10:1Y, Q1028 (b)), (10:%), {8y, and (10:9).
on days 5 to 10 the pairings weve {(10:0) ) (60D, (109, (1015, (b ™)

and (10:9).  Half the subiects received the conditions for ¢ach three

cveles per day in the order piven. The remaining halt received a
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randomized order of conditions for each of the three cycles for the
day. As shown later, the set order of conditions started with the
easiest condition and ended with the hardest, as determined by the nor-
mative expected number of total errors. At any oneé time a subject wor-
ked on a sclution to two problems, one with the displays on the top
half of the CRT, the othes with the displays on the bottor aalf. For
half the subjects the top problem involved only the digits and the bot-
tom problem only the letters. For the other subjects the top problem
was letters and the bottom problem was digits. Trials on the two pro-
blems alternated. Both problems were on the sar > (N:A) condition, and
both had to be solved ¢o 1 criterion ¢f 4 successive trials on the same
problem, not successive tvials i the actual experiment.

"

On each trial the subjc * saw the display "Ruspond From:" followed
by the N possible rosponses. He pressed a kev corvesponding to the one
he thought cotrect, and this response was Jdisplay ! on the CRT below
the response scr.  The tfoedback set of & respoenses, ‘ncluciag the sin-
ple correct vespense, thon was displaved telow the subject 's response.

The interval Juring which tac feedback st was displaved {s the study

Tatency,  Fellowing coset of airplay ob the feedback set the subiedt

had up v+ 05 secenmds to studv the displav, o press the carriage rotar
kev to conctude that trial, and te cal!l or the next experizental frag
The [S-second Ti-it between the one to respond and the rexponre, o Uhe
response latency, was never regehed. The cata Dor the tirst o twe v

are ot Iacluded o the results, and since the experiment.al Jesiaon was
compietely e.nlained to the subivets, thev were well practiced oo the

procedure betorve the experiment hepan.

e o



The data from all experimental groups for days 3 chrough 10 are
cons'dered as a whole since ncne of the manipuilations other than the
(¥:A) pairings showed consi "~nt differences. Table 3 shows the mean
total errors for each condition. The normative expec'ed total errors,

determined by analvtic methods of a derivation, or, in the more dif-

ficult cases, cowputer-run Monte Zarlos, are also shown.

TABLE 3

Predicted and Observed Total Errors

Observed mean Normative expected
N:A total errors total errovrs
2:1 0.51 0.50
6:1 0.78 0.83
10:1 0.94 0.90
10:3 1.91 1.84
6:1 2.26 2.13
10:5 3.35 2.95
10:7 5.56 5.39
6:5 7.58 7.25
10:9 18.50 17.35

P PO P TS
. e et o ——

The conditions with A = 1 were essentially cases of one-trial learaing.
Errors of chance happened on the first trial, and or ercceeding trials
the error frequency was less than .015. Thus the subjects performed
essentially normatively on these 2-i{tem list stralightforward PAL tasks.
The learning curves for the remaining six conditions with A > 1 are
plotted in Figures 6 through 11, along with the normative learning
curves. The normative error probabillties were not determined beyond

the twentieth trial. The normative and observed learning cuives are
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very close 80 some interest is the cross of —ormative and obhserve!

curves in the (A25) condition {(Figure 10). Tuis better than normative
performance is most [ikely due to rhe ability of sub ects to usec the
hG-correct-response criterion to solve one pioblem on<c the other had
been solved. This criterion use was not bullt into the normative model.
The study latencies are plotted in Figures 12-13. We do nu! know
how to discuss these latencics meaningfully in a quantitative manner,
but present them to call attentioun to a qualitative peculiarity. Tn
the (10:9) and (6:5) cenditions (Figure 13) a rarked rise follow~d by
a decline occurred in the study latency fer several trials. 1In these
conditions when the feedback set was close to the response set in size,
sdbjecis frequentiy said that they watched for the nonreinforced respon-
¢ changes observed in the studv ' lencies could result from suv-b
a practice, with the rise due to the increasing number of responses
knewn to be incorrect, tollowed by the switchover, and then the decline
in Tatency with the deercasing number of rsponses considered possibly
correct. It should be noted that by using such a method to intersect
first complements of reinforcemeat sets, and then the sets themselves,
a subject needed ot owost S items in memory per problem. With two prob-
Tems at once, he needed at most 10, but since the feedbt X sets on each
problem were independent, the likelihood of both problems having maximum
space at once was low.  Thus for the most part all relevant information
could te stored in fewer items than the 7 or 8 generally estimated as

maximun rfor short-term memory.
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Pari Four/Three

A MICROSTUDY OF HUMAN INFOKMATION-SEEKING BRHAVIOR

T.  INTRCDUCTION
Learning may ba considered to be the utilization of information

in order to change one's beliefs concerning the optimality of each one
of a set of possible responses. This information mav be of a partic-
ularly simple sort; in paired-associate learning, for example, after
each trial when there is a correcti 1 procedure the subject is given
complete information concerning the correctness of ecach respense. In
a vecent paper by Jamiscn, Lhamo. and Supnes [8] a number of paired-
associate learning situations in which much richer information struc-
tures could be analyzed were modeled and discussed. 1In the concluding
section ¢f that paper the alternative tvpes of information that can be
used to influence learning were caregorized and discussed in terms of
the way in which the information does affect the learning process. My
purpose in this section is to look in a very simple wav at adding one
further com- w .~ o *his analvsis:  that further complication fis

introduced by the possibility of buving information. When information

is not free the class of decisions that the decision maker is confronted

with {s vastly increased as he must decide on how much and what tvpe of
information to purchase. The experiment to be describhed {s a natural
follow~on to one reported in a studv bv Keller, (ole, Rurke, and FEstes
{9). Tt {s thus worth briefly recalling thelr procedure,

The Keller, Cole, Burke, and Estes paper analvzes {nformatlon

structures that are much richer than that of ordinarv palred-associate

-
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learning, though the tvpe or informaticn structure that thev analvze
is quite different from thuse analvzed in Jamison, Lhamon, and Suppes.
In Keller, et al., there were twn groupe of subjects, each of which
was faced with a paired-associate list of 25 items. There were two
possible responses to each item, and to each response there was as-
signed a point value that had a numerical value between 1 and 8. At
the ourset of the experiment the subjects did not know the point value
of any of the responses; their pay at the end of the experiment was
directlv proportional to the total number of points that thev accumu-
lated during the experimenta’ sessior. Thev accumulated peints for
each response thev made; that is, thev received on each response the
poinu value of that response. The two experimental conditicns were
thesa, In the filrst, after the subject responded he was told that the
peint value of both the response he had made and the alternative re-

. sponse, that is, he was given complete infermation about what the op-
timal response was. I the second cxperlmental condition the subject
was given the point value onlv of the response that he had made. Thus,
unless he rerefved an 8 or 1, the mavinum or minimum possible, he was
vnerrtain ws o o wheoer the response he had selected would be, {n fact,
Splimal.  The primarv parpose of Keller, et al., was to examine how both
the Information value of the refnforcement and {ts recard value affect
the subject's performance. in this studv I focus on a single aspect of
their results, that 1s, that of how the subject decides about whether
or naot to acquire Information concerning another rosponse when Le al-
readv has a high reward value, sav 6, as a result of hi. first rei;ponse.

this 1e an {ssue that arises clearly in their data. It turns out that

s S, .

i
g
!
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wi.en the two reward values associated with the two response alterna-
tives are, say, 6 and 8, then occasionally if the subject first responds
with the alternative having the value of 6, he may never learn that the
correct response is 8. It is implied that this is a failure of the
subject to properly learn the material at hand; an alternative inter-
pretation, to be developed below, is simply that the cost of switching
to look at the other value is simply too high for the subject in terms
of its expected value. In order to isolate how subjects behave when
faced with choices about buying information the experiment described
below attempts to provide a task in which the learning problem is so
simple that it need not be analyzed. 1In effect, it is a rerun of the
Rellar, et al., experiment with a single stimulus item instead of a
list of 25 items.

The problem to be investigated concerns, then, hew the value of
the response alternative that the subject knows affects his decision
concerning whether or not to look at the o%ther alternative and how the
expected number of remaining trials affects that decision. This last
was not a variable explicitly considered in Keller, et al.; it is a
variable explicitly given to the subject in the experiment described
below. Before describing tiie method of the experiment, a brief theo-

retical development will be required.

IT. THEORETICAL DEVELOPMENT

The basis of the theoretical model to be described below 1s the
assumption that the subject is trying to maximize his expected tctal

point value against an "objective' probability distribution that he
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knows. (This could be generalized to allow for a utility function
nonlinear in points and a subjective probability distribution.) The
subject is shown a card with a point value, R, between 50 and 100 on
the front and a number, N, that indicates the number of trials remain-
ing. He can then elect to do one of two things--stay or switch. If
he stays, the number of points he receives is R for each trial, i.e.,
a total of NF., If he switches he will receive on the first trial a
point value randomly chosen between 0 and 100; this point value is
written on the back of the card and, for the remaining N-1 trials, he
receives the larger of the point values written on the froat and back
of the card. The analogy between this and the Keller, et al., experi-
ment 1s obvious. Since his expected value for the first trial is 50
points (assuming a symmetrical distribution) by switching he gives up
the difference between 50 and what he knows for certain he can obtain
from the value on the front of the card. He does so in the hope that
the number on the back of the card is sufficiently greater than the
number on the front so that the expected loss can he made up in the
remaining N-1 trials.

Under what circumstances should the subject switch, assuming max-~
imization of expected point value? Let Vi be the expected point value
of switching and VS be the expected value of staving. G = V1 - VS is
the expected gain from switching; the subject should switch if G > 0.

As previously noted, VS = NR. V, will depend on the distribution of

i
the point value on the back of the card. 1In the experiment we used a
uniform distribution and I will make that assumntion here; generaliza-
tion to an arbitrary distributicn is straightforward. Let p be the

%
probability of fmproving if vou switch and R be the expected point
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5

vaive of the back of the card given that it s an improvement over the

front. 1ucn, and here the assurption of uniform distribution is used:

p=1- K100 and R = 50 + R/2,
We can now express Vi in thece terms,
'/‘\'
Vi =50+ 1 {1 - p) (¥ - )R+ p(N - IR .
The 50 is the exrected value of the first trial: with nrobabilitv | - o

the subject duesn't improve and hence receives {N--1)R more points; with

®
robability p he dees improve and receives (N-1R more points. By

ae

substiturtion it is ne

)

poessible to express N in terts onlv of R and G,

the expected gain from switching:

P
i
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i

(100-R)

Bv setting G = 0 we obtain a relation between N and R such that the
cubject snould be indifferent about switching. This relationship is
graphed 1n figure 1: above the line he should switch and below it he

shoutd not.

In th  xperiment to be described we selected a numher of dis-
crete values of G (rangi @ from -15 to 10), put them into Pquation 1,
and computed 4 number of NyR pairg consistent with that value of o,

The hope was that the observed probability of switehiae wonld he a
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simple monotonicallv increasing function of G. Though our experiment
failed to bhear out this hope, the probahility of switching did tend to
increase with increasing G.

It is perhaps worth making one final comment concerning the resuits
¢. Keller, et al. From the rapid rise in the curve on Figure 1, it is
perhaps not surprising that sublects would get locked intc a 6 response
when the alternative had z point value of 8, This situation would cor-
respond roughly to a point value of 75 in the schema depicted in Figure
1. For switching to be optimal in these circumstances the subject
would have to expect at least 9 more trials with that stimulus item

prior to the end of the experiment.

IIT. METHOD

The experiment was run in the spring of 1965 with 29 female under-
graduates from Boston University as subjects. They participated on a
voluntary basis and were glven no pay nor were they satisfying any
course requirements. Each subiert attended one experimental session
of approximately 20-30 minutes duration. Each sutject was presented
with 3o cards and shown the front of each card. On the front were 'wo
numbers, one designated N and the other V. The subjects were told N
was the number of trials remaining and that V was the point value of
staying with the number on the front of the card. The subjects were
told they could, if they wished, switch and see the number on the back
of the card. TIf that number were higher than the number on the front
of the card, they would receive that for the remaining N trials. 1If,

on the other hand, the number on the front of the card were higher,
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they would receive the number on the back of the card for the first
trial and the number on the f.:nt fcr the remaining N-1 trials. Thev
were told that the numpers on the back of the card would be uniformly
distributed between O and 100. The meaning of "niform distributioa"
was carefully explained in intuitive terms. They were told that their
objective was to tryv to maximize the total number of points they accu-
mulated over the 36 cards. It was further explained to them in some
detall cconsiderations thai might lead the~ to wish to switch or not
switch, that is, a high point value was explained to be a pressure not
to switch and a large N value was explained to be a pressure teo switch.
These points were explained until the subject showed an understanding
of the considerations involved; that is, the subject realized that by
switching they were sacrificing some points in the short term in order
to take advantage of the possibility of receiving more points in the
longer term.

Table 1 shows the N aad V values of the 26 cards. The N and V
values were chosen to cluster around each of a number of different G
values between ~15 and +10. The G values represented were -15, -10,
-8, -5, -2, 0, 2, 5, 8, and 10. Each G value was represented by from
three to five cards. All subjects were shoun the same cards and each

subject responded once to each card.

IV. RESULTS

Table 1 alsov shows the results for the experiment on a card-by-
card basis. The final column of Table 1 sh~ws the percentage of the

subjects who switched for each card. These results are shown in a




Table 1

PERCENTAGE OF SUBJEGTS SWITCHING

N V % Switch N V % Switch
1 65 17 1 52 52

3 70 21 3 63 52

8 75 31 4 63 52

4 75 34 3 58 52

2 70 34,5 2 &8 55

8 80 38 1 58 55

1 60 38 zZ 58 55
10 80 42 2 585 55

6 74 42 3 6C 55

&€ 75 45 1 55 58

7 75 45 2 60 58

3 65 43 9 75 58

4 70 48 7 73 62

6 70 48 8 73 62

4 65 48 1 50 65.5
2 52 43 2 50 65.5
2 64 52 5 65 65.5
5 70 52 7 70 69

more meaningful form in %able 2, There the percentage that switched
averaged across cards for each G value is shown listed against the
various G values. It {is clear from Table 2 that the probabilitv of
switching, or the mean switching value, is not related in a very clear
and systematic way to the G value as would be predicied from a theorv
based on maximization of expected point value. Nevertheless, it is
also clear that the expected polnt value of switching, that is, the

G value, does influence the probability of switching:; for those G
values less than zero, the average probability of switching was .47%.
For those G values above zero, the average probability of switching
was .56. Nevertheless, it is clear that there is congiderable erratic

and, as yet, unexplained variation within numbers given in Table 2.
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Table 2 s
PERCENTAGE SWITCHING RELATED TO GAIN
Gain, G % Switching
-15 (4)3 31 L
-10 (4) 36 .
- 8 (4) 51 S
-5 (3) 50
- 2 (5) 48 e
0 (3) 62
2 (3) 52
5 (4) 55
8 (3) 57
10 (3) 61

%The numter in parenthesis is the
number of cards having N,V values that
give the G value indicated. Thus the
total of the numbers in parenthesis is
36.

The primary results of this experiment are to show that it is
\ possitle to analyze information-seeking behavior in a simple micro-
task, though as yet, there 1s not a clear theorv to explain the re-
sultw. Nevertheless, the results do appear to be at least influenced
by the expected point value of the information to be obtained. The
<¥ﬁ \ problem now 1s to look at other influences that might be affecting
switching behavior, such as: curlosity, undue attention to the r~le-
vant point value of the alternative given at present, undue attention

to the number of remaining trirls, and simple random components. -
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